Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cladistics ; 40(1): 21-33, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37787424

RESUMEN

The owlet moths (Noctuoidea; ~43-45K described species) are one of the most ecologically diverse and speciose superfamilies of animals. Moreover, they comprise some of the world's most notorious pests of agriculture and forestry. Despite their contributions to terrestrial biodiversity and impacts on ecosystems and economies, the evolutionary history of Noctuoidea remains unclear because the superfamily lacks a statistically robust phylogenetic and temporal framework. We reconstructed the phylogeny of Noctuoidea using data from 1234 genes (946.4 kb nucleotides) obtained from the genome and transcriptome sequences of 76 species. The relationships among the six families of Noctuoidea were well resolved and consistently recovered based on both concatenation and gene coalescence approaches, supporting the following relationships: Oenosandridae + (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))). A Yule tree prior with three unlinked molecular clocks was identified as the preferred BEAST analysis using marginal-likelihood estimations. The crown age of Noctuoidea was estimated at 74.5 Ma, with most families originating before the end of the Paleogene (23 Ma). Our study provides the first statistically robust phylogenetic and temporal framework for Noctuoidea, including all families of owlet moths, based on large-scale genomic data.


Asunto(s)
Genoma Mitocondrial , Mariposas Nocturnas , Animales , Filogenia , Ecosistema , Mariposas Nocturnas/genética , Genómica
2.
J Vis Exp ; (188)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36373905

RESUMEN

Global insect declines continue to accelerate. Effective genetic sampling is critically needed to advance the understanding of many taxa and address existing knowledge gaps. This protocol represents a demonstrated method for nondestructively sampling rare butterflies for population genetic structure or DNA barcoding analyses. It uses the chorion of hatched butterfly ovae to yield sufficiently high quantity and quality DNA for successful gene sequencing to confirm species identity and quantify genetic variation. It may be particularly useful when other tissue sampling techniques are impractical or unavailable. While developed for a lepidopteran, it nonetheless could easily be adapted for use with other insect species. It was specifically designed with ease of use as a goal to help maximize broad implementation by individuals of varying experience and skill levels, such as community scientists, conservation practitioners, and students, and for use over large geographic areas to facilitate broad population sampling. The data generated can help inform taxonomic and listing decisions, conservation and management actions, and enhance basic ecological research.


Asunto(s)
Mariposas Diurnas , Humanos , Animales , Mariposas Diurnas/genética , Dinámica Poblacional
3.
Genome Biol Evol ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34962985

RESUMEN

We sequence, assemble, and annotate the genome of Atopsyche davidsoni Sykora, 1991, the first whole-genome assembly for the caddisfly family Hydrobiosidae. This free-living and predatory caddisfly inhabits streams in the high-elevation Andes and is separated by more than 200 Myr of evolutionary history from the most closely related caddisfly species with genome assemblies available. We demonstrate the promise of PacBio HiFi reads by assembling the most contiguous caddisfly genome assembly to date with a contig N50 of 14 Mb, which is more than 6× more contiguous than the current most contiguous assembly for a caddisfly (Hydropsyche tenuis). We recover 98.8% of insect BUSCO genes indicating a high level of gene completeness. We also provide a genome annotation of 12,232 annotated proteins. This new genome assembly provides an important new resource for studying genomic adaptation of aquatic insects to harsh, high-altitude environments.


Asunto(s)
Holometabola , Insectos , Animales , Genoma , Genómica , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
4.
GigaByte ; 2022: gigabyte64, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824508

RESUMEN

Insect silk is a versatile biomaterial. Lepidoptera and Trichoptera display some of the most diverse uses of silk, with varying strength, adhesive qualities, and elastic properties. Silk fibroin genes are long (>20 Kbp), with many repetitive motifs that make them challenging to sequence. Most research thus far has focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the caddisfly Eubasilissa regina. Both genomes were highly contiguous (N50  = 9.7 Mbp/32.4 Mbp, L50  = 13/11) and complete (BUSCO complete  = 99.3%/95.2%), with complete and contiguous recovery of silk heavy fibroin gene sequences. We show that HiFi long-read sequencing is helpful for understanding genes with long, repetitive regions.

5.
Genome Biol Evol ; 13(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599325

RESUMEN

We provide a new, annotated genome assembly of Neomicropteryx cornuta, a species of the so-called mandibulate archaic moths (Lepidoptera: Micropterigidae). These moths belong to a lineage that is thought to have split from all other Lepidoptera more than 300 Ma and are consequently vital to understanding the early evolution of superorder Amphiesmenoptera, which contains the order Lepidoptera (butterflies and moths) and its sister order Trichoptera (caddisflies). Using PacBio HiFi sequencing reads, we assembled a highly contiguous genome with a contig N50 of nearly 17 Mb. The assembled genome length of 541,115,538 bp is about half the length of the largest published Amphiesmenoptera genome (Limnephilus lunatus, Trichoptera) and double the length of the smallest (Papilio polytes, Lepidoptera). We find high recovery of universal single copy orthologs with 98.1% of BUSCO genes present and provide a genome annotation of 15,643 genes aided by resolved isoforms from PacBio IsoSeq data. This high-quality genome assembly provides an important resource for studying ecological and evolutionary transitions in the early evolution of Amphiesmenoptera.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Mariposas Diurnas/genética , Genoma , Insectos/genética , Mariposas Nocturnas/genética , Análisis de Secuencia de ADN
6.
Gigascience ; 10(6)2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34076242

RESUMEN

BACKGROUND: The availability of thousands of genomes has enabled new advancements in biology. However, many genomes have not been investigated for their quality. Here we examine quality trends in a taxonomically diverse and well-known group, butterflies (Papilionoidea), and provide draft, de novo assemblies for all available butterfly genomes. Owing to massive genome sequencing investment and taxonomic curation, this is an excellent group to explore genome quality. FINDINGS: We provide de novo assemblies for all 822 available butterfly genomes and interpret their quality in terms of completeness and continuity. We identify the 50 highest quality genomes across butterflies and conclude that the ringlet, Aphantopus hyperantus, has the highest quality genome. Our post-processing of draft genome assemblies identified 118 butterfly genomes that should not be reused owing to contamination or extremely low quality. However, many draft genomes are of high utility, especially because permissibility of low-quality genomes is dependent on the objective of the study. Our assemblies will serve as a key resource for papilionid genomics, especially for researchers without computational resources. CONCLUSIONS: Quality metrics and assemblies are typically presented with annotated genome accessions but rarely with de novo genomes. We recommend that studies presenting genome sequences provide the assembly and some metrics of quality because quality will significantly affect downstream results. Transparency in quality metrics is needed to improve the field of genome science and encourage data reuse.


Asunto(s)
Mariposas Diurnas , Animales , Benchmarking , Mariposas Diurnas/genética , Mapeo Cromosómico , Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
7.
Ecol Evol ; 9(23): 13389-13401, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871652

RESUMEN

The sky islands of southeastern Arizona (AZ) mark a major transition zone between tropical and temperate biota and are considered a neglected biodiversity hotspot. Dispersal ability and host plant specificity are thought to impact the history and diversity of insect populations across the sky islands. We aimed to investigate the population structure and phylogeography of two pine-feeding pierid butterflies, the pine white (Neophasia menapia) and the Mexican pine white (Neophasia terlooii), restricted to these "islands" at this transition zone. Given their dependence on pines as the larval hosts, we hypothesized that habitat connectivity affects population structure and is at least in part responsible for their allopatry. We sampled DNA from freshly collected butterflies from 17 sites in the sky islands and adjacent high-elevation habitats and sequenced these samples using ddRADSeq. Up to 15,399 SNPs were discovered and analyzed in population genetic and phylogenetic contexts with Stacks and pyRAD pipelines. Low genetic differentiation in N. menapia suggests that it is panmictic. Conversely, there is strong evidence for population structure within N. terlooii. Each sky island likely contains a population of N. terlooii, and clustering is hierarchical, with populations on proximal mountains being more related to each other. The N. menapia habitat, which is largely contiguous, facilitates panmixia, while the N. terlooii habitat, restricted to the higher elevations on each sky island, creates distinct population structure. Phylogenetic results corroborate those from population genetic analyses. The historical climate-driven fluxes in forest habitat connectivity have implications for understanding the biodiversity of fragmented habitats.

8.
Mol Phylogenet Evol ; 131: 99-105, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391315

RESUMEN

The subfamily Erebinae (Lepidoptera, Erebidae) includes approximately 10,000 species with many still undescribed. It is one of the most diverse clades within the moth superfamily Noctuoidea and encompasses a diversity of ecological habits. Erebine caterpillars feed on a broad range of host plants including several economically important crops. Adults possess a unique array of adaptations for predator defense, including some of the most sensitive hearing organs (tympana) across the Lepidoptera and striking wing coloration to startle visual predators. Despite the relevance of these moths to agriculture and ecological research, a robust phylogenetic framework is lacking. Here we used anchored hybrid enrichment, a relatively new approach in phylogenomics, to resolve relationships among the subfamily. Using the recently developed Lep1 anchored hybrid enrichment probe set, 658 gene fragments with an average length of 320 bp were captured from an exemplar set of 75 erebine species, representing 73 genera and 23 tribes. While the total number of erebine tribes is not firmly established, this represents at least 75% of known tribal level diversity. Anchored hybrid enrichment data were partitioned by locus and by codon position for maximum likelihood phylogenetic analysis and coalescent-based species-tree approaches. Results from our study provided strong nodal support (BP ≥ 95) for nearly all nodes in the partitioned ML tree, solidifying many relationships that were previously uncertain or moderately supported based on morphology or a smaller number of gene fragments. Likelihood analyses confidently resolved the placement of Acantholipini as a sister tribe to Sypnini and all other Erebinae. The remaining tribes were placed in a single, strongly supported clade split into two major subclades. Additionally, 25 tropical species that did not have previous tribal assignments are confidently placed on the phylogeny. Statistical comparisons with Shimodaira-Hasegawa (SH) tests found that our maximum likelihood trees were significantly more likely than alternative hypotheses. This study demonstrates the utility of anchored phylogenomics for resolving relationships within subfamilies of Lepidoptera.


Asunto(s)
Genómica , Hibridación Genética , Mariposas Nocturnas/genética , Filogenia , Animales , Secuencia de Bases , Codón/genética , Funciones de Verosimilitud
9.
Zootaxa ; 3974(3): 391-400, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26249912

RESUMEN

Euwallacea Hopkins and Wallacellus Hulcr & Cognato are ambrosia beetle genera within the tribe Xyleborini (Coleoptera: Curculionidae: Scolytinae). Several species have recently received attention due to their establishment in non-native regions with serious ecological and economic consequences. To clarify generic placement of these species, we tested reciprocal monophyly of the two genera and the placement of several species using molecular phylogenetics. We sequenced, or re-used published sequences of, three markers (COI mtDNA, 28S nuclear rDNA and ArgK single-copy nuclear) from representatives of Euwallacea, Wallacellus, the Ambrosiodmus clade, and the clade containing Xyleborus s. str., and inferred their relationships with a Bayesian approach. We also tested explicit alternative topologies, and examined taxonomic utility of characters used for the delimitation of the genera.        All species of Euwallacea, Wallacellus, and two species of Xyleborus were monophyletic with high phylogenetic support. Based on the analysis and shared morphological characters, we transferred the following species to Euwallacea: Xyleborus declivispinatus (Schedl), Wallacellus piceus (Motschulsky), Xyleborus posticus (Eichhoff), Wallacellus similis (Ferrari), and Wallacellus striatulus (Browne). The genus Wallacellus was made a junior synonym of Euwallacea and morphological diagnosis of Euwallacea was updated. The results demonstrated that Euwallacea has a pantropical distribution.


Asunto(s)
Escarabajos/clasificación , Escarabajos/genética , Filogenia , Animales , Femenino , Masculino , Especificidad de la Especie
10.
PLoS One ; 7(11): e49018, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185290

RESUMEN

Single nucleotide polymorphisms (SNPs) are valuable tools for ecological and evolutionary studies. In non-model species, the use of SNPs has been limited by the number of markers available. However, new technologies and decreasing technology costs have facilitated the discovery of a constantly increasing number of SNPs. With hundreds or thousands of SNPs potentially available, there is interest in comparing and developing methods for evaluating SNPs to create panels of high-throughput assays that are customized for performance, research questions, and resources. Here we use five different methods to rank 43 new SNPs and 71 previously published SNPs for sockeye salmon: F(ST), informativeness (I(n)), average contribution to principal components (LC), and the locus-ranking programs BELS and WHICHLOCI. We then tested the performance of these different ranking methods by creating 48- and 96-SNP panels of the top-ranked loci for each method and used empirical and simulated data to obtain the probability of assigning individuals to the correct population using each panel. All 96-SNP panels performed similarly and better than the 48-SNP panels except for the 96-SNP BELS panel. Among the 48-SNP panels, panels created from F(ST), I(n), and LC ranks performed better than panels formed using the top-ranked loci from the programs BELS and WHICHLOCI. The application of ranking methods to optimize panel performance will become more important as more high-throughput assays become available.


Asunto(s)
Modelos Animales , Polimorfismo de Nucleótido Simple/genética , Salmón/genética , Alaska , Animales , Sitios Genéticos/genética , Geografía , Heterocigoto , Análisis de Componente Principal , Probabilidad , Reproducibilidad de los Resultados , Tamaño de la Muestra , Manejo de Especímenes , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...