Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(15)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33498030

RESUMEN

We report results from a series of diamond-anvil-cell synchrotron x-ray diffraction and large-volume-press experiments, and calculations, to investigate the phase diagram of commercial polycrystalline high-strength Ti-6Al-4V alloy in pressure-temperature space. Up to ∼30 GPa and 886 K, Ti-6Al-4V is found to be stable in the hexagonal-close-packed, orαphase. The effect of temperature on the volume expansion and compressibility ofα-Ti-6Al-4V is modest. The martensiticα→ω(hexagonal) transition occurs at ∼30 GPa, with both phases coexisting until at ∼38-40 GPa the transition to theωphase is completed. Between 300 K and 844 K theα→ωtransition appears to be independent of temperature.ω-Ti-6Al-4V is stable to ∼91 GPa and 844 K, the highest combined pressure and temperature reached in these experiments. Pressure-volume-temperature equations-of-state for theαandωphases of Ti-6Al-4V are generated and found to be similar to pure Ti. A pronounced hysteresis is observed in theω-Ti-6Al-4V on decompression, with the hexagonal structure reverting back to theαphase at pressures below ∼9 GPa at room temperature, and at a higher pressure at elevated temperatures. Based on our data, we estimate the Ti-6Al-4Vα-ß-ωtriple point to occur at ∼900 K and 30 GPa, in good agreement with our calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...