Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-17381306

RESUMEN

In recent years, the combinations of computational and molecular approaches have led to the identification of an increasing number of small, noncoding RNAs encoded by bacteria and their plasmids and phages. Most of the characterized small RNAs have been shown to operate at a posttranscriptional level, modulating mRNA stability or translation by base-pairing with the 5' regions of the target mRNAs. However, a subset of small RNAs has been found to regulate transcription. One example is the abundant 6S RNA that has been proposed to compete for DNA binding of RNA polymerase by mimicking the open conformation of promoter DNA. Other small RNAs affect transcription termination via base-pairing interactions with sequences in the mRNA. Here, we discuss current understanding and questions regarding the roles of small RNAs in regulating transcription.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transcripción Genética , Células Eucariotas , Modelos Genéticos , Regiones Promotoras Genéticas , ARN no Traducido/genética , ARN no Traducido/metabolismo
2.
Genes Dev ; 15(13): 1637-51, 2001 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-11445539

RESUMEN

A burgeoning list of small RNAs with a variety of regulatory functions has been identified in both prokaryotic and eukaryotic cells. However, it remains difficult to identify small RNAs by sequence inspection. We used the high conservation of small RNAs among closely related bacterial species, as well as analysis of transcripts detected by high-density oligonucleotide probe arrays, to predict the presence of novel small RNA genes in the intergenic regions of the Escherichia coli genome. The existence of 23 distinct new RNA species was confirmed by Northern analysis. Of these, six are predicted to encode short ORFs, whereas 17 are likely to be novel functional small RNAs. We discovered that many of these small RNAs interact with the RNA-binding protein Hfq, pointing to a global role of the Hfq protein in facilitating small RNA function. The approaches used here should allow identification of small RNAs in other organisms.


Asunto(s)
Bacterias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/análisis , Northern Blotting/métodos , Proteínas Portadoras/metabolismo , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Proteína de Factor 1 del Huésped , Factores de Integración del Huésped , Sistemas de Lectura Abierta , Unión Proteica , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Análisis de Secuencia de ARN
3.
J Bacteriol ; 183(15): 4562-70, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11443091

RESUMEN

The genome-wide transcription profile of Escherichia coli cells treated with hydrogen peroxide was examined with a DNA microarray composed of 4,169 E. coli open reading frames. By measuring gene expression in isogenic wild-type and oxyR deletion strains, we confirmed that the peroxide response regulator OxyR activates most of the highly hydrogen peroxide-inducible genes. The DNA microarray measurements allowed the identification of several new OxyR-activated genes, including the hemH heme biosynthetic gene; the six-gene suf operon, which may participate in Fe-S cluster assembly or repair; and four genes of unknown function. We also identified several genes, including uxuA, encoding mannonate hydrolase, whose expression might be repressed by OxyR, since their expression was elevated in the DeltaoxyR mutant strain. In addition, the induction of some genes was found to be OxyR independent, indicating the existence of other peroxide sensors and regulators in E. coli. For example, the isc operon, which specifies Fe-S cluster formation and repair activities, was induced by hydrogen peroxide in strains lacking either OxyR or the superoxide response regulators SoxRS. These results expand our understanding of the oxidative stress response and raise interesting questions regarding the nature of other regulators that modulate gene expression in response to hydrogen peroxide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli/genética , Peróxido de Hidrógeno/farmacología , Proteínas Represoras/metabolismo , Transactivadores , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Bases , ADN Bacteriano , Escherichia coli/efectos de los fármacos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , Regulón , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
4.
J Bacteriol ; 183(15): 4571-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11443092

RESUMEN

A computational search was carried out to identify additional targets for the Escherichia coli OxyR transcription factor. This approach predicted OxyR binding sites upstream of dsbG, encoding a periplasmic disulfide bond chaperone-isomerase; upstream of fhuF, encoding a protein required for iron uptake; and within yfdI. DNase I footprinting assays confirmed that oxidized OxyR bound to the predicted site centered 54 bp upstream of the dsbG gene and 238 bp upstream of a known OxyR binding site in the promoter region of the divergently transcribed ahpC gene. Although the new binding site was near dsbG, Northern blotting and primer extension assays showed that OxyR binding to the dsbG-proximal site led to the induction of a second ahpCF transcript, while OxyR binding to the ahpCF-proximal site leads to the induction of both dsbG and ahpC transcripts. Oxidized OxyR binding to the predicted site centered 40 bp upstream of the fhuF gene was confirmed by DNase I footprinting, but these assays further revealed a second higher-affinity site in the fhuF promoter. Interestingly, the two OxyR sites in the fhuF promoter overlapped with two regions bound by the Fur repressor. Expression analysis revealed that fhuF was repressed by hydrogen peroxide in an OxyR-dependent manner. Finally, DNase I footprinting experiments showed OxyR binding to the site predicted to be within the coding sequence of yfdI. These results demonstrate the versatile modes of regulation by OxyR and illustrate the need to learn more about the ensembles of binding sites and transcripts in the E. coli genome.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas Periplasmáticas , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas de Unión a Hierro , Datos de Secuencia Molecular , Oxidorreductasas/genética , Proteínas de Unión Periplasmáticas , Peroxidasas/genética , Peroxirredoxinas , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Activación Transcripcional
5.
Cell ; 105(1): 103-13, 2001 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-11301006

RESUMEN

The Escherichia coli OxyR transcription factor senses H2O2 and is activated through the formation of an intramolecular disulfide bond. Here we present the crystal structures of the regulatory domain of OxyR in its reduced and oxidized forms, determined at 2.7 A and 2.3 A resolutions, respectively. In the reduced form, the two redox-active cysteines are separated by approximately 17 A. Disulfide bond formation in the oxidized form results in a significant structural change in the regulatory domain. The structural remodeling, which leads to different oligomeric associations, accounts for the redox-dependent switch in OxyR and provides a novel example of protein regulation by "fold editing" through a reversible disulfide bond formation within a folded domain.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN , Modelos Moleculares , Proteínas Represoras/química , Factores de Transcripción/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN/metabolismo , Dimerización , Disulfuros/química , Escherichia coli , Proteínas de Escherichia coli , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Pliegue de Proteína , Estructura Terciaria de Proteína/fisiología , Proteínas Represoras/genética , Relación Estructura-Actividad , Factores de Transcripción/genética , Activación Transcripcional
6.
Mol Microbiol ; 39(3): 595-605, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11169101

RESUMEN

The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Análisis de Secuencia de ADN , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética
8.
Mol Biol Cell ; 11(12): 4241-57, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11102521

RESUMEN

We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.


Asunto(s)
Ambiente , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Carbono/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Diamida/farmacología , Ditiotreitol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Calefacción , Peróxido de Hidrógeno/farmacología , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Presión Osmótica , Saccharomyces cerevisiae/efectos de los fármacos , Reactivos de Sulfhidrilo/farmacología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Vitamina K/farmacología
9.
Annu Rev Microbiol ; 54: 439-61, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11018134

RESUMEN

The glutathione- and thioredoxin-dependent reduction systems are responsible for maintaining the reduced environment of the Escherichia coli and Saccharomyces cerevisiae cytosol. Here we examine the roles of these two cellular reduction systems in the bacterial and yeast defenses against oxidative stress. The transcription of a subset of the genes encoding glutathione biosynthetic enzymes, glutathione reductases, glutaredoxins, thioredoxins, and thioredoxin reductases, as well as glutathione- and thioredoxin-dependent peroxidases is clearly induced by oxidative stress in both organisms. However, only some strains carrying mutations in single genes are hypersensitive to oxidants. This is due, in part, to the redundant effects of the gene products and the overlap between the two reduction systems. The construction of strains carrying mutations in multiple genes is helping to elucidate the different roles of glutathione and thioredoxin, and studies with such strains have recently revealed that these two reduction systems modulate the activities of the E. coli OxyR and SoxR and the S. cerevisiae Yap1p transcriptional regulators of the adaptive responses to oxidative stress.


Asunto(s)
Escherichia coli/fisiología , Glutatión/metabolismo , Estrés Oxidativo/fisiología , Saccharomyces cerevisiae/fisiología , Tiorredoxinas/metabolismo , Oxidación-Reducción
10.
Cell ; 101(6): 613-23, 2000 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-10892648

RESUMEN

The E. coli 6S RNA was discovered more than three decades ago, yet its function has remained elusive. Here, we demonstrate that 6S RNA associates with RNA polymerase in a highly specific and efficient manner. UV crosslinking experiments revealed that 6S RNA directly contacts the sigma70 and beta/beta' subunits of RNA polymerase. 6S RNA accumulates as cells reach the stationary phase of growth and mediates growth phase-specific changes in RNA polymerase. Stable association between sigma70 and core RNA polymerase in extracts is only observed in the presence of 6S RNA. We show 6S RNA represses expression from a sigma70-dependent promoter during stationary phase. Our results suggest that the interaction of 6S RNA with RNA polymerase modulates sigma70-holoenzyme activity.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , ARN Bacteriano/genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Escherichia coli/enzimología , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , ARN Bacteriano/metabolismo , ARN no Traducido
11.
J Biol Chem ; 275(4): 2505-12, 2000 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-10644706

RESUMEN

Two genes encoding thioredoxin are found on the Escherichia coli genome. Both of them are capable of reducing protein disulfide bonds in vivo and in vitro. The catalytic site contains a Cys-X(1)-X(2)-Cys motif in a so-called thioredoxin fold. Thioredoxin 2 has two additional pairs of cysteines in a non-conserved N-terminal domain. This domain does not appear to be important for the function of thioredoxin 2 in donating electrons to ribonucleotide reductase, 3'-phosphoadenylsulfate-reductase, or the periplasmic disulfide isomerase DsbC. Our results suggests that the two thioredoxins are equivalent for most of the in vivo functions that were tested. On the other hand, transcriptional regulation is different. The expression of trxC is regulated by the transcriptional activator OxyR in response to oxidative stress. Oxidized OxyR binds directly to the trxC promoter and induces its expression in response to elevated hydrogen peroxide levels or the disruption of one or several of the cytoplasmic redox pathways. Mutants lacking thioredoxins 1 and 2 are more resistant to high levels of hydrogen peroxide, whereas they are more sensitive to diamide, a disulfide bond-inducing agent.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli/metabolismo , Estrés Oxidativo , Isoformas de Proteínas/metabolismo , Tiorredoxinas/metabolismo , Secuencia de Bases , ADN Bacteriano , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Isoformas de Proteínas/genética , Proteínas Represoras/metabolismo , Tiorredoxinas/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
12.
Biochem Pharmacol ; 59(1): 1-6, 2000 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-10605928

RESUMEN

Prokaryotic cells employ redox-sensing transcription factors to detect elevated levels of reactive oxygen species and regulate expression of antioxidant genes. In Escherichia coli, two such transcription factors, OxyR and SoxR, have been well characterized. The OxyR protein contains a thiol-disulfide redox switch to sense hydrogen peroxide. The SoxR protein uses a 2Fe-2S cluster to sense superoxide generated by redox-cycling agents, as well as to sense nitric oxide. Both proteins are turned on and off with very fast kinetics (approximate minutes), allowing rapid cellular responses to oxidative stress. The mechanisms by which these and other prokaryotic proteins sense redox signals have provided useful paradigms for understanding redox signal transduction in eukaryotic cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli , Peróxido de Hidrógeno/metabolismo , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Estrés Oxidativo , Homología de Secuencia de Aminoácido , Superóxidos/metabolismo
13.
J Bacteriol ; 181(15): 4639-43, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10419964

RESUMEN

The cytotoxic effects of reactive oxygen species are largely mediated by iron. Hydrogen peroxide reacts with iron to form the extremely reactive and damaging hydroxyl radical via the Fenton reaction. Superoxide anion accelerates this reaction because the dismutation of superoxide leads to increased levels of hydrogen peroxide and because superoxide elevates the intracellular concentration of iron by attacking iron-sulfur proteins. We found that regulators of the Escherichia coli responses to oxidative stress, OxyR and SoxRS, activate the expression of Fur, the global repressor of ferric ion uptake. A transcript encoding Fur was induced by hydrogen peroxide in a wild-type strain but not in a DeltaoxyR strain, and DNase I footprinting assays showed that OxyR binds to the fur promoter. In cells treated with the superoxide-generating compound paraquat, we observed the induction of a longer transcript encompassing both fur and its immediate upstream gene fldA, which encodes a flavodoxin. This polycistronic mRNA is induced by paraquat in a wild-type strain but not in a DeltasoxRS strain, and SoxS was shown to bind to the fldA promoter. These results demonstrate that iron metabolism is coordinately regulated with the oxidative stress defenses.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli/fisiología , Flavoproteínas , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores , Factores de Transcripción/metabolismo , Secuencia de Bases , Huella de ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Metaloproteínas/metabolismo , Datos de Secuencia Molecular , Estrés Oxidativo , Paraquat/farmacología , Regiones Promotoras Genéticas , ARN Mensajero/genética , Superóxidos/metabolismo , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 96(11): 6161-5, 1999 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-10339558

RESUMEN

The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the disulfide bond. Here we show that OxyR can be activated by two possible pathways. In mutants defective in the cellular disulfide-reducing systems, OxyR is constitutively activated by a change in the thiol-disulfide redox status in the absence of added oxidants. In wild-type cells, OxyR is activated by hydrogen peroxide. By monitoring the presence of the OxyR disulfide bond after exposure to hydrogen peroxide in vivo and in vitro, we also show that the kinetics of OxyR oxidation by low concentrations of hydrogen peroxide is significantly faster than the kinetics of OxyR reduction, allowing for transient activation in an overall reducing environment. We propose that the activity of OxyR in vivo is determined by the balance between hydrogen peroxide levels and the cellular redox environment.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli/metabolismo , Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Fosfatasa Alcalina/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Genotipo , Cinética , Modelos Químicos , Oxidación-Reducción
15.
Curr Opin Microbiol ; 2(2): 188-94, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10322176

RESUMEN

Much has been learnt about oxidative stress from studies of Escherichia coli. Key regulators of the adaptive responses in this organism are the SoxRS and OxyR transcription factors, which induce the expression of antioxidant activities in response to O2*- and H2O2 stress, respectively. Recently, a variety of biochemical assays together with the characterization of strains carrying mutations affecting the antioxidant activities and the regulators have given general insights into the sources of oxidative stress, the damage caused by oxidative stress, defenses against the oxidative stress, and the mechanisms by which the stress is perceived. These studies have also shown that the oxidative stress responses are intimately coupled to other regulatory networks in the cell.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli/fisiología , Estrés Oxidativo/fisiología , Transactivadores , Proteínas Bacterianas/metabolismo , Modelos Biológicos , Células Procariotas/fisiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
17.
Trends Microbiol ; 7(1): 37-45, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10068996

RESUMEN

Bacterial cells contain several small RNAs (sRNAs) that are not translated. These stable, abundant RNAs act by multiple mechanisms, such as RNA-RNA basepairing, RNA-protein interactions and intrinsic RNA activity, and regulate diverse cellular functions, including RNA processing, mRNA stability, translation, protein stability and secretion.


Asunto(s)
Escherichia coli/genética , ARN Bacteriano , Secuencia de Bases , Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Bacteriano/fisiología
18.
EMBO J ; 17(20): 6061-8, 1998 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-9774349

RESUMEN

The OxyS regulatory RNA integrates the adaptive response to hydrogen peroxide with other cellular stress responses and protects against DNA damage. Among the OxyS targets is the rpoS-encoded sigma(s) subunit of RNA polymerase. Sigma(s) is a central regulator of genes induced by osmotic stress, starvation and entry into stationary phase. We examined the mechanism whereby OxyS represses rpoS expression and found that the OxyS RNA inhibits translation of the rpoS message. This repression is dependent on the hfq-encoded RNA-binding protein (also denoted host factor I, HF-I). Co-immunoprecipitation and gel mobility shift experiments revealed that the OxyS RNA binds Hfq, suggesting that OxyS represses rpoS translation by altering Hfq activity.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Proteínas de Unión al ADN , Proteínas de Escherichia coli , ARN Bacteriano/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Proteínas Represoras/fisiología , Factor sigma/fisiología , Regiones no Traducidas/fisiología , Secuencia de Bases , Escherichia coli , Proteína de Factor 1 del Huésped , Factores de Integración del Huésped , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estrés Oxidativo/fisiología , Pruebas de Precipitina , Proteínas de Unión al ARN/fisiología , Factores de Transcripción/fisiología
19.
EMBO J ; 17(20): 6069-75, 1998 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-9774350

RESUMEN

OxyS is a small untranslated RNA which is induced in response to oxidative stress in Escherichia coli. This novel RNA acts as a global regulator to activate or repress the expression of as many as 40 genes, including the fhlA-encoded transcriptional activator and the rpoS-encoded sigma(s) subunit of RNA polymerase. Deletion analysis of OxyS showed that different domains of the small RNA are required for the regulation of fhlA and rpoS. We examined the mechanism of OxyS repression of fhlA and found that the OxyS RNA inhibits fhlA translation by pairing with a short sequence overlapping the Shine-Dalgarno sequence, thereby blocking ribosome binding/translation.


Asunto(s)
Proteínas de Escherichia coli , ARN Bacteriano/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Transactivadores/genética , Secuencia de Bases , Dimerización , Escherichia coli , Datos de Secuencia Molecular , Mutagénesis , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , Estrés Oxidativo/genética , ARN Bacteriano/química , ARN Bacteriano/farmacología , Ribosomas/genética , Ribosomas/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/biosíntesis , Regiones no Traducidas/fisiología
20.
Genetics ; 149(3): 1575-85, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9649544

RESUMEN

The Arabidopsis HY4 gene encodes the nonessential blue light photoreceptor CRY1. Loss-of-function hy4 mutants have an elongated hypocotyl phenotype after germination under blue light. We previously analyzed 20 independent hy4 alleles produced by fast neutron mutagenesis. These alleles were grouped into two classes based on their genetic behavior and corresponding deletion size: (1) null hy4 alleles that were semidominant over wild type and contained small or moderate-sized deletions at HY4 and (2) null hy4 alleles that were recessive lethal and contained large HY4 deletions. Here we describe one additional fast neutron hy4 mutant, B144, that did not fall into either of these two classes. Mutant B144 was isolated as a heterozygote with an intermediate hy4 phenotype. One allele from this mutant, hy4-B144(Delta), contains a large deletion at HY4 and is recessive lethal. The other allele from this mutant, HY4-B144*, appears to be intact and functional but is unstable and spontaneously converts to a nonfunctional hy4 allele. In addition, HY4-B144* is lethal in homozygotes and suppresses local recombination. We discuss genetic and epigenetic mechanisms that may account for the unusual behavior of the HY4-B144* allele.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico , Proteínas de Drosophila , Proteínas del Ojo , Flavoproteínas/genética , Genes de Plantas , Células Fotorreceptoras de Invertebrados , Proteínas de Plantas/genética , Alelos , Arabidopsis/fisiología , Proteínas de Arabidopsis , Cruzamientos Genéticos , Criptocromos , Flavoproteínas/biosíntesis , Genotipo , Luz , Mutagénesis , Neutrones , Fenotipo , Proteínas de Plantas/biosíntesis , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA