Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RNA ; 22(3): 383-96, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26769856

RESUMEN

In the microRNA (miRNA) pathway, Dicer processes precursors to mature miRNAs. For efficient processing, double-stranded RNA-binding proteins support Dicer proteins. In flies, Loquacious (Loqs) interacts with Dicer1 (dmDcr1) to facilitate miRNA processing. Here, we have solved the structure of the third double-stranded RNA-binding domain (dsRBD) of Loqs and define specific structural elements that interact with dmDcr1. In addition, we show that the linker preceding dsRBD3 contributes significantly to dmDcr1 binding. Furthermore, our structural work demonstrates that the third dsRBD of Loqs forms homodimers. Mutations in the dimerization interface abrogate dmDcr1 interaction. Loqs, however, binds to dmDcr1 as a monomer using the identified dimerization surface, which suggests that Loqs might form dimers under conditions where dmDcr1 is absent or not accessible. Since critical sequence elements are conserved, we suggest that dimerization might be a general feature of dsRBD proteins in gene silencing.


Asunto(s)
Drosophila melanogaster/genética , MicroARNs/genética , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Proteínas de Drosophila , Silenciador del Gen , Humanos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia
2.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26527002

RESUMEN

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/metabolismo
3.
Genes Dev ; 28(7): 749-64, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24696456

RESUMEN

The Drosophila protein brain tumor (Brat) forms a complex with Pumilio (Pum) and Nanos (Nos) to repress hunchback (hb) mRNA translation at the posterior pole during early embryonic development. It is currently thought that complex formation is initiated by Pum, which directly binds the hb mRNA and subsequently recruits Nos and Brat. Here we report that, in addition to Pum, Brat also directly interacts with the hb mRNA. We identify Brat-binding sites distinct from the Pum consensus motif and show that RNA binding and translational repression by Brat do not require Pum, suggesting so far unrecognized Pum-independent Brat functions. Using various biochemical and biophysical methods, we also demonstrate that the NHL (NCL-1, HT2A, and LIN-41) domain of Brat, a domain previously believed to mediate protein-protein interactions, is a novel, sequence-specific ssRNA-binding domain. The Brat-NHL domain folds into a six-bladed ß propeller, and we identify its positively charged top surface as the RNA-binding site. Brat belongs to the functional diverse TRIM (tripartite motif)-NHL protein family. Using structural homology modeling, we predict that the NHL domains of all TRIM-NHL proteins have the potential to bind RNA, indicating that Brat is part of a conserved family of RNA-binding proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Modelos Moleculares , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/clasificación , Drosophila melanogaster/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética
4.
Photosynth Res ; 119(1-2): 191-201, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23543331

RESUMEN

The key photosynthetic, CO2-fixing enzyme Rubisco forms inactivated complexes with its substrate ribulose 1,5-bisphosphate (RuBP) and other sugar phosphate inhibitors. The independently evolved AAA+ proteins Rubisco activase and CbbX harness energy from ATP hydrolysis to remodel Rubisco complexes, facilitating release of these inhibitors. Here, we discuss recent structural and mechanistic advances towards the understanding of protein-mediated Rubisco activation. Both activating proteins appear to form ring-shaped hexameric arrangements typical for AAA+ ATPases in their functional form, but display very different regulatory and biochemical properties. Considering the thermolability of the plant enzyme, an improved understanding of the mechanism for Rubisco activation may help in developing heat-resistant plants adapted to the challenge of global warming.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biotecnología/métodos , Biotecnología/tendencias , Conformación Proteica , Fosfatos de Azúcar/metabolismo , Temperatura
5.
Nature ; 479(7372): 194-9, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22048315

RESUMEN

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the fixation of atmospheric CO(2) in photosynthesis, but tends to form inactive complexes with its substrate ribulose 1,5-bisphosphate (RuBP). In plants, Rubisco is reactivated by the AAA(+) (ATPases associated with various cellular activities) protein Rubisco activase (Rca), but no such protein is known for the Rubisco of red algae. Here we identify the protein CbbX as an activase of red-type Rubisco. The 3.0-Å crystal structure of unassembled CbbX from Rhodobacter sphaeroides revealed an AAA(+) protein architecture. Electron microscopy and biochemical analysis showed that ATP and RuBP must bind to convert CbbX into functionally active, hexameric rings. The CbbX ATPase is strongly stimulated by RuBP and Rubisco. Mutational analysis suggests that CbbX functions by transiently pulling the carboxy-terminal peptide of the Rubisco large subunit into the hexamer pore, resulting in the release of the inhibitory RuBP. Understanding Rubisco activation may facilitate efforts to improve CO(2) uptake and biomass production by photosynthetic organisms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Rhodobacter sphaeroides/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Dióxido de Carbono/metabolismo , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Ribulosafosfatos/metabolismo , Ribulosafosfatos/farmacología , Relación Estructura-Actividad
6.
Nat Struct Mol Biol ; 18(12): 1366-70, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22056769

RESUMEN

Rubisco, the enzyme that catalyzes the fixation of atmospheric CO(2) in photosynthesis, is subject to inactivation by inhibitory sugar phosphates. Here we report the 2.95-Å crystal structure of Nicotiana tabacum Rubisco activase (Rca), the enzyme that facilitates the removal of these inhibitors. Rca from tobacco has a classical AAA(+)-protein domain architecture. Although Rca populates a range of oligomeric states when in solution, it forms a helical arrangement with six subunits per turn when in the crystal. However, negative-stain electron microscopy of the active mutant R294V suggests that Rca functions as a hexamer. The residues determining species specificity for Rubisco are located in a helical insertion of the C-terminal domain and probably function in conjunction with the N-domain in Rubisco recognition. Loop segments exposed toward the central pore of the hexamer are required for the ATP-dependent remodeling of Rubisco, resulting in the release of inhibitory sugar.


Asunto(s)
Nicotiana/enzimología , Proteínas de Plantas/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activador de Tejido Plasminógeno/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fotosíntesis/fisiología , Proteínas de Plantas/fisiología , Estructura Terciaria de Proteína , Alineación de Secuencia , Activador de Tejido Plasminógeno/fisiología , Nicotiana/metabolismo
7.
Mol Cell ; 26(1): 27-39, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17434124

RESUMEN

Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.


Asunto(s)
Regulación Alostérica , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Ligandos , Adenosina Difosfato/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Medición de Intercambio de Deuterio , Proteínas de Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Químicos , Nucleótidos/química , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA