Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35383828

RESUMEN

Neurons extend axons to form the complex circuitry of the mature brain. This depends on the coordinated response and continuous remodelling of the microtubule and F-actin networks in the axonal growth cone. Growth cone architecture remains poorly understood at nanoscales. We therefore investigated mouse hippocampal neuron growth cones using cryo-electron tomography to directly visualise their three-dimensional subcellular architecture with molecular detail. Our data showed that the hexagonal arrays of actin bundles that form filopodia penetrate and terminate deep within the growth cone interior. We directly observed the modulation of these and other growth cone actin bundles by alteration of individual F-actin helical structures. Microtubules with blunt, slightly flared or gently curved ends predominated in the growth cone, frequently contained lumenal particles and exhibited lattice defects. Investigation of the effect of absence of doublecortin, a neurodevelopmental cytoskeleton regulator, on growth cone cytoskeleton showed no major anomalies in overall growth cone organisation or in F-actin subpopulations. However, our data suggested that microtubules sustained more structural defects, highlighting the importance of microtubule integrity during growth cone migration.


Asunto(s)
Actinas , Conos de Crecimiento , Animales , Axones , Citoesqueleto , Tomografía con Microscopio Electrónico , Ratones , Microtúbulos/ultraestructura , Neuronas
3.
Eur J Neurosci ; 49(6): 794-804, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29791756

RESUMEN

Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also acts directly on dopamine axons to increase dopamine uptake by promoting dopamine transporter (DAT) surface expression, counteracting enhanced dopamine release. Here, we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nm) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR vs. AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Dopamina/metabolismo , Insulina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/farmacología , Insulina/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas Sprague-Dawley , Receptor de Insulina/efectos de los fármacos , Receptor de Insulina/metabolismo
4.
Acta Crystallogr D Struct Biol ; 74(Pt 6): 572-584, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29872007

RESUMEN

The microtubule cytoskeleton is involved in many vital cellular processes. Microtubules act as tracks for molecular motors, and their polymerization and depolymerization can be harnessed to generate force. The structures of microtubules provide key information about the mechanisms by which their cellular roles are accomplished and the physiological context in which these roles are performed. Cryo-electron microscopy allows the visualization of in vitro-polymerized microtubules and has provided important insights into their overall morphology and the influence of a range of factors on their structure and dynamics. Cryo-electron tomography can be used to determine the unique three-dimensional structure of individual microtubules and their ends. Here, a previous cryo-electron tomography study of in vitro-polymerized GMPCPP-stabilized microtubules is revisited, the findings are compared with new tomograms of dynamic in vitro and cellular microtubules, and the information that can be extracted from such data is highlighted. The analysis shows the surprising structural heterogeneity of in vitro-polymerized microtubules. Lattice defects can be observed both in vitro and in cells. The shared ultrastructural properties in these different populations emphasize the relevance of three-dimensional structures of in vitro microtubules for understanding microtubule cellular functions.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Microtúbulos/química , Animales , Bovinos , Microtúbulos/ultraestructura , Conformación Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Polimerizacion
5.
Hum Mol Genet ; 26(1): 90-108, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007902

RESUMEN

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/ultraestructura , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Neuronas/ultraestructura
6.
Neurobiol Dis ; 92(Pt A): 18-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26299390

RESUMEN

A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Citoesqueleto/metabolismo , Epilepsia/fisiopatología , Malformaciones del Desarrollo Cortical del Grupo II/fisiopatología , Movimiento Celular/fisiología , Humanos , Neuronas/fisiología
7.
Nat Commun ; 6: 8543, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503322

RESUMEN

Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Dopamina/metabolismo , Insulina/metabolismo , Interneuronas/metabolismo , Núcleo Accumbens/metabolismo , Obesidad/metabolismo , Obesidad/psicología , Animales , Preferencias Alimentarias , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/metabolismo , Recompensa , Transducción de Señal
8.
J Neurochem ; 118(5): 714-20, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21689106

RESUMEN

Dopamine (DA) is an important transmitter in both motor and limbic pathways. We sought to investigate the role of D(1)-receptor activation in axonal DA release regulation in dorsal striatum using a D(1)-receptor antagonist, SKF-83566. Evoked DA release was monitored in rat striatal slices using fast-scan cyclic voltammetry. SKF-83566 caused a concentration-dependent increase in peak single-pulse evoked extracellular DA concentration, with a maximum increase of ∼ 65% in 5 µM SKF-83566. This was accompanied by a concentration-dependent increase in extracellular DA concentration clearance time. Both effects were occluded by nomifensine (1 µM), a dopamine transporter (DAT) inhibitor, suggesting that SKF-83566 acted via the DAT. We tested this by examining [(3)H]DA uptake into LLc-PK cells expressing rat DAT, and confirmed that SKF-83566 is a competitive DAT inhibitor with an IC(50) of 5.7 µM. Binding studies with [(3)H]CFT, a cocaine analog, showed even more potent action of SKF-83566 at the DAT cocaine binding site (IC(50) = 0.51 µM). Thus, data obtained using SKF-83566 as a D(1) DA-receptor antagonist may be confounded by concurrent DAT inhibition. More positively, however, SKF-83566 might be a candidate to attenuate cocaine effects in vivo because of the greater potency of this drug at the cocaine versus DA binding site of the DAT.


Asunto(s)
2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Prosencéfalo/efectos de los fármacos , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Dopamina/farmacocinética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Electroquímica/métodos , Técnicas In Vitro , Masculino , Nomifensina/farmacología , Prosencéfalo/citología , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tritio/farmacocinética , Tropanos/farmacocinética
9.
Nat Biotechnol ; 27(11): 1038-42, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838197

RESUMEN

Analyzing specialized cells in heterogeneous tissues is crucial for understanding organ function in health and disease. Thus far, however, there has been no convenient method for studying gene expression in cells purified by fluorescence-activated cell sorting (FACS) using intracellular markers. Here we show that the quantitative nuclease protection assay (qNPA) enables transcriptional analysis of intracytoplasmically stained cells sorted by FACS. Applying the method to mouse pancreatic islet-cell subsets, we detected both expected and unknown lineage-specific gene expression patterns. Some beta cells from pregnant animals were found to express Mafb, previously observed only in immature beta cells during embryonic development. The four 'housekeeping' genes tested were expressed in purified islet-cell subpopulations with a notable variability, dependent on both cell lineage and developmental stage. Application of qNPA to intracellularly stained, FACS-sorted cells should be broadly applicable to the analysis of gene expression in subpopulations of any heterogeneous tissue, including tumors.


Asunto(s)
Citoplasma/genética , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos de Protección de Nucleasas/métodos , Coloración y Etiquetado , Transcripción Genética , Envejecimiento/genética , Animales , Separación Celular , Disección , Perfilación de la Expresión Génica , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...