Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 9(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34946148

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disorder affecting around 30 million patients worldwide. The predominant sporadic variant remains enigmatic as the underlying cause has still not been identified. Since efficient therapeutic treatments are still lacking, the microbiome and its manipulation have been considered as a new, innovative approach. 5xFAD Alzheimer's disease model mice were subjected to one-time fecal material transfer after antibiotics-treatment using two types of inoculation: material derived from the caecum of age-matched (young) wild type mice or from middle aged, 1 year old (old) wild type mice. Mice were profiled after transfer for physiological parameters, microbiome, behavioral tasks, and amyloid deposition. A single time transfer of cecal material from the older donor group established an aged phenotype in the recipient animals as indicated by elevated cultivatable fecal Enterobacteriaceae and Lactobacillaceae representative bacteria, a decreased Firmicutes amount as assessed by qPCR, and by increased levels of serum LPS binding protein. While behavioral deficits were not accelerated, single brain regions (prefrontal cortex and dentate gyrus) showed higher plaque load after transfer of material from older animals. We could demonstrate that the age of the donor of cecal material might affect early pathological hallmarks of Alzheimer's disease. This could be relevant when considering new microbiome-based therapies for this devastating disorder.

2.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878020

RESUMEN

Wheat amylase trypsin inhibitors (ATIs) represent a common dietary protein component of gluten-containing cereals (wheat, rye, and barley). They act as toll-like receptor 4 ligands, and are largely resistant to intestinal proteases, eliciting a mild inflammatory response within the intestine after oral ingestion. Importantly, nutritional ATIs exacerbated inflammatory bowel disease and features of fatty liver disease and the metabolic syndrome in mice. For Alzheimer's disease (AD), both inflammation and altered insulin resistance are major contributing factors, impacting onset as well as progression of this devastating brain disorder in patients. In this study, we evaluated the impact of dietary ATIs on a well-known rodent model of AD (5xFAD). We assessed metabolic, behavioral, inflammatory, and microbial changes in mice consuming different dietary regimes with and without ATIs, consumed ad libitum for eight weeks. We demonstrate that ATIs, with or without a gluten matrix, had an impact on the metabolism and gut microbiota of 5xFAD mice, aggravating pathological hallmarks of AD. If these findings can be translated to patients, an ATI-depleted diet might offer an alternative therapeutic option for AD and warrants clinical intervention studies.


Asunto(s)
Enfermedad de Alzheimer/patología , Conducta Animal , Microbioma Gastrointestinal , Inflamación/patología , Placa Amiloide/patología , Triticum/enzimología , Inhibidores de Tripsina/farmacología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Amilasas/química , Animales , Dieta/efectos adversos , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Amiloide/metabolismo , Tripsina/química
3.
FASEB J ; 34(9): 11883-11899, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32681583

RESUMEN

Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína A-I/metabolismo , Colon/inervación , Colon/metabolismo , Sistema Nervioso Entérico/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Apolipoproteína A-I/genética , Colon/patología , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/patología , Masculino , Ratones , Ratones Transgénicos
4.
J Alzheimers Dis Rep ; 4(1): 15-19, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32206754

RESUMEN

Apolipoprotein A1 (ApoA1) is the major protein component of the high-density lipoprotein and involved in cholesterol transport. Disruption of cholesterol homeostasis has been identified as a contributing factor for Alzheimer's disease (AD). Moreover, polymorphisms of ApoA1 have been associated with higher risk of disease onset and cognitive decline. Therefore, ApoA1 has been suggested as a biomarker in AD. Here, we tested a small cohort of AD and non-AD dementia patients and measured levels of ApoA1 in cerebrospinal fluid. Our results indicate that ApoA1 might not be applicable to distinguish AD from other forms of dementia.

5.
Front Aging Neurosci ; 11: 182, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396076

RESUMEN

These days, the important role of retinoids in adult brain functionality and homeostasis is well accepted and has been proven by genomic as well as non-genomic mechanisms. In the healthy brain, numerous biological processes, e.g., cell proliferation, neurogenesis, dendritic spine formation as well as modulation of the immune system, have been attributed to retinoid signaling. This, together with the finding that retinoid metabolism is impaired in Alzheimer's disease (AD), led to preclinical and early clinical testing of natural and synthetic retinoids as innovative pharmaceuticals with multifactorial properties. Acitretin, an aromatic retinoid, was found to exert an anti-amyloidogenic effect in mouse models for AD as well as in human patients by stimulating the alpha-secretase ADAM10. The lipophilic drug was already demonstrated to easily pass the blood brain barrier after i.p. administration and evoked increased nest building capability in the 5xFAD mouse model. Additionally, we analyzed the immune-modulatory capacity of acitretin via a multiplex array in the 5xFAD mouse model and evaluated some of our findings in human CSF derived from a pilot study using acitretin. Although several serum analytes did not display changes, Interleukin-6 (IL-6) was found to be significantly increased in both-mouse and human neural material. This demonstrates that acitretin exerts an immune stimulatory effect-besides the alpha-secretase induction-which could impact the alleviation of learning and memory disabilities observed in the mouse model.

6.
Molecules ; 24(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366160

RESUMEN

The identification and characterization of fungal commensals of the human gut (the mycobiota) is ongoing, and the effects of their various secondary metabolites on the health and disease of the host is a matter of current research. While the neurons of the central nervous system might be affected indirectly by compounds from gut microorganisms, the largest peripheral neuronal network (the enteric nervous system) is located within the gut and is exposed directly to such metabolites. We analyzed 320 fungal extracts and their effect on the viability of a human neuronal cell line (SH-SY5Y), as well as their effects on the viability and functionality of the most effective compound on primary enteric neurons of murine origin. An extract from P. coprobium was identified to decrease viability with an EC50 of 0.23 ng/µL in SH-SY5Y cells and an EC50 of 1 ng/µL in enteric neurons. Further spectral analysis revealed that the effective compound was patulin, and that this polyketide lactone is not only capable of evoking ROS production in SH-SY5Y cells, but also diverse functional disabilities in primary enteric neurons such as altered calcium signaling. As patulin can be found as a common contaminant on fruit and vegetables and causes intestinal injury, deciphering its specific impact on enteric neurons might help in the elaboration of preventive strategies.


Asunto(s)
Micotoxinas/toxicidad , Neuronas/efectos de los fármacos , Patulina/toxicidad , Penicillium/química , Animales , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Mezclas Complejas/química , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Micotoxinas/química , Micotoxinas/aislamiento & purificación , Neuronas/citología , Neuronas/metabolismo , Patulina/química , Patulina/aislamiento & purificación , Cultivo Primario de Células , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
7.
Cell Mol Life Sci ; 76(5): 1005-1025, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30599067

RESUMEN

BACKGROUND: The ADAM10-mediated cleavage of transmembrane proteins regulates cellular processes such as proliferation or migration. Substrate cleavage by ADAM10 has also been implicated in pathological situations such as cancer or Morbus Alzheimer. Therefore, identifying endogenous molecules, which modulate the amount and consequently the activity of ADAM10, might contribute to a deeper understanding of the enzyme's role in both, physiology and pathology. METHOD: To elucidate the underlying cellular mechanism of the TBX2-mediated repression of ADAM10 gene expression, we performed overexpression, RNAi-mediated knockdown and pharmacological inhibition studies in the human neuroblastoma cell line SH-SY5Y. Expression analysis was conducted by e.g. real-time RT-PCR or western blot techniques. To identify the binding region of TBX2 within the ADAM10 promoter, we used luciferase reporter assay on deletion constructs and EMSA/WEMSA experiments. In addition, we analyzed a TBX2 loss-of-function Drosophila model regarding the expression of ADAM10 orthologs by qPCR. Furthermore, we quantified the mRNA level of TBX2 in post-mortem brain tissue of AD patients. RESULTS: Here, we report TBX2 as a transcriptional repressor of ADAM10 gene expression: both, the DNA-binding domain and the repression domain of TBX2 were necessary to effect transcriptional repression of ADAM10 in neuronal SH-SY5Y cells. This regulatory mechanism required HDAC1 as a co-factor of TBX2. Transcriptional repression was mediated by two functional TBX2 binding sites within the core promoter sequence (- 315 to - 286 bp). Analysis of a TBX2 loss-of-function Drosophila model revealed that kuzbanian and kuzbanian-like, orthologs of ADAM10, were derepressed compared to wild type. Vice versa, analysis of cortical brain samples of AD-patients, which showed reduced ADAM10 mRNA levels, revealed a 2.5-fold elevation of TBX2, while TBX3 and TBX21 levels were not affected. CONCLUSION: Our results characterize TBX2 as a repressor of ADAM10 gene expression and suggest that this regulatory interaction is conserved across tissues and species.


Asunto(s)
Proteína ADAM10/genética , Enfermedad de Alzheimer/etiología , Regulación de la Expresión Génica , Proteínas de Dominio T Box/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Sitios de Unión , Encéfalo/metabolismo , Células Cultivadas , Desintegrinas/genética , Drosophila , Proteínas de Drosophila/genética , Histona Desacetilasa 1/fisiología , Humanos , Metaloendopeptidasas/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Dominio T Box/química , Transcripción Genética
8.
Sci Rep ; 8(1): 1329, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358714

RESUMEN

ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer's disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, efficacy and safety has to be analyzed in Alzheimer patients in the future.


Asunto(s)
Proteína ADAM10/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Disulfiram/farmacología , Proteínas de la Membrana/metabolismo , Proteína ADAM10/sangre , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/sangre , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Línea Celular Tumoral , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Disulfiram/uso terapéutico , Humanos , Masculino , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...