Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(18): 13004-13011, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165880

RESUMEN

Heavy elements and some nitroimidazoles both exhibit radiosensitizing properties through different mechanisms. In an effort to see how the overall radiosensitivity might be affected when the two radiosensitizers are combined in the same molecule, we studied the gas-phase photodissociation of two brominated nitroimidazoles and a bromine-free reference sample. Synchrotron radiation was employed to initiate the photodynamics and energy-resolved multiparticle coincidence spectroscopy was used to study the ensuing dissociation. We observed the brominated samples releasing high amounts of potentially radiosensitizing fragments upon dissociation. Since bromination also increases the likelihood of the drug molecule being ionised per a given X-ray dose, we conclude that heavy-element substitution of nitroimidazoles appears to be a viable path towards new, potent radiosensitizer drugs.

2.
Phys Chem Chem Phys ; 25(7): 5795-5807, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744651

RESUMEN

Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.

3.
Phys Chem Chem Phys ; 23(37): 21249-21261, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542547

RESUMEN

We studied the gas-phase photodissociation of a fully halogenated aromatic molecule, tetrabromothiophene, upon core-shell ionization by using synchrotron radiation and energy-resolved multiparticle coincidence spectroscopy. Photodynamics was initiated by the selective soft X-ray ionization of three elements - C, S, and Br - leading to the formation of dicationic states by Auger decay. From a detailed study of photodissociation upon Br 3d ionization, we formulate a general fragmentation scheme, where dissociation into neutral fragments and a pair of cations prevails, but dicationic species are also produced. We conclude that dicationic tetrabromothiophene typically undergoes deferred charge separation (with one of the ions being often Br+) that may be followed by secondary dissociation steps, depending on the available internal energy of the parent dication. Observations suggest that the ejection of neutral bromine atoms as the first step of deferred charge separation is a prevailing feature in dicationic dissociation, although sometimes in this step the C-Br bonds appear to remain intact and the thiophene ring is broken instead. Ionization-site-specific effects are observed particularly in doubly charged fragments and as large differences in the yields of the intact parent dication. We interpret these effects, using first-principles calculations and molecular dynamics simulations of core-hole states, as likely caused by the geometry changes during the core-hole lifetime.

4.
J Chem Phys ; 152(7): 074302, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087651

RESUMEN

In this paper, we examine decay and fragmentation of core-excited and core-ionized water molecules combining quantum chemical calculations and electron-energy-resolved electron-ion coincidence spectroscopy. The experimental technique allows us to connect electronic decay from core-excited states, electronic transitions between ionic states, and dissociation of the molecular ion. To this end, we calculate the minimum energy dissociation path of the core-excited molecule and the potential energy surfaces of the molecular ion. Our measurements highlight the role of ultra-fast nuclear motion in the 1a1 -14a1 core-excited molecule in the production of fragment ions. OH+ fragments dominate for spectator Auger decay. Complete atomization after sequential fragmentation is also evident through detection of slow H+ fragments. Additional measurements of the non-resonant Auger decay of the core-ionized molecule (1a1 -1) to the lower-energy dication states show that the formation of the OH+ + H+ ion pair dominates, whereas sequential fragmentation OH+ + H+ → O + H+ + H+ is observed for transitions to higher dication states, supporting previous theoretical investigations.

5.
J Mass Spectrom ; 55(5): e4487, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31826309

RESUMEN

We have studied the dissociation of the trifluoromethane molecule, CHF3 , into negative ionic fragments at the C 1s and F 1s edges. The measurements were performed by detecting coincidences between negative and positive ions. We observed five different negative ions: F- , H- , C- , CF- , and F2 - . Their production was confirmed by the analysis of triple coincidence events (negative-ion/positive-ion/positive-ion or NIPIPI coincidences) that were recorded with cleaner signals than those of the negative-ion/positive-ion coincidences. The intensities of the most intense NIPIPI coincidence channels were recorded as a function of photon energy across the C 1s and F 1s excitations and ionization thresholds. We also observed dissociation channels involving the formation of one negative ion and three positive ions. Our results demonstrate that negative-ion/positive-ion coincidence spectroscopy is a very sensitive method to observe anions, which at inner-shell edges are up to three orders of magnitude less probable dissociation products than cations.


Asunto(s)
Aniones/análisis , Clorofluorocarburos de Metano/química , Cationes/análisis , Electrones , Espectrometría de Masas/métodos
6.
Sci Rep ; 9(1): 8977, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222052

RESUMEN

While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d → 2p3/2 decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method.

7.
J Phys Chem A ; 122(1): 224-233, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29237124

RESUMEN

We have studied the fragmentation of the methanol molecule after core excitation and core ionization by observing coincidences between negative and positive ions. Five different negative ions (H-, C-, CH-, O-, and OH-) were observed at both the C 1s and O 1s edges. As negative ion formation occurs after resonant and normal Auger decay of core-hole states, it is necessarily linked with the release of positively charged fragments. Our data show that such fragmentation can happen in many different ways: We found approximately 30 negative-ion/positive-ion/positive-ion coincidence (NIPIPICO) channels. All involve only singly charged positive ions. Fragmentation channels leading to atomic ions are the most probable, but positive molecular ions are also frequently found in the context of anion formation. Coincidence yields as a function of photon energy were determined for the most intense NIPIPICO channels. Adding together the data measured at different photon energies, we could also verify the occurrence of four-ion coincidences, which involved one negative ion (H- or O-) and three positive ions.

8.
Phys Chem Chem Phys ; 19(30): 19631-19639, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28435962

RESUMEN

Dissociative double photoionization of cyclopropane is studied in the inner-valence region using tunable synchrotron radiation. With the aid of ab initio quantum chemical calculations the energies of dication states and their favoured fragmentation pathways are determined. These are compared to the experimental appearance energies of two-body fragmentation processes and to the kinetic energy released upon dissociation. Photon energy dependent state-selective dissociation in the 25-35 eV range is found. Calculations of dissociation pathways suggest that cyclopropane ring-deformation is selectively triggered at certain photon energies. The calculations suggest that initial ring deformation essentially determines the population of different dication states that function as gateways for particular dissociation channels. The measurements show that stepwise ionization processes populate dissociative 3e'-2 states via ring-opening and Jahn-Teller active states at photon energies below the double-ionization threshold. For energies above the double-ionization threshold the kinematics indicate that double ionization takes place predominantly within the Franck-Condon region populating 3e'-1 1e''-1 states.

9.
J Phys Chem A ; 120(32): 6389-93, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27442879

RESUMEN

We report yields of mass-resolved negative ions and positive ions measured in coincidence after core excitation of water molecules. The analysis of negative-ion/positive-ion and negative-ion/positive-ion/positive-ion coincidence events provides new information on pathways leading to negative ion production, enhancing the present understanding of the dissociation processes of the water molecule. Dissociation following (resonant) Auger decay dominates negative ion production, but radiative decay is shown to contribute above the O 1s ionization threshold. A peak in the H(-)/O(+) yield above the O 1s threshold is attributed to decay from doubly excited states.

10.
J Phys Chem A ; 120(25): 4360-7, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27276338

RESUMEN

We have studied the production of neutral fragments in high-Rydberg (HR) states at the C 1s and O 1s edges of the CO2 molecule by performing two kinds of experiments. First, the yields of neutral HR fragments were measured indirectly by ionizing such fragments in a static electric field and by collecting resulting singly charged positive ions as a function of the photon energy. Such measurements reveal not only excitations below the core ionization thresholds but also thresholds for single core-hole and shakeup photoionization. Second, we obtained the mass spectra of neutral HR fragments at selected photon energies by exploiting pulsed field ionization; they show atomic fragments C(HR) and O(HR). We discuss dissociation pathways leading to the production of neutral HR fragments in core excitation and ionization of CO2.

11.
Rev Sci Instrum ; 87(1): 013109, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26827311

RESUMEN

We present a newly constructed spectrometer for negative-ion/positive-ion coincidence spectroscopy of gaseous samples. The instrument consists of two time-of-flight ion spectrometers and a magnetic momentum filter for deflection of electrons. The instrument can measure double and triple coincidences between mass-resolved negative and positive ions with high detection efficiency. First results include identification of several negative-ion/positive-ion coincidence channels following inner-shell photoexcitation of sulfur hexafluoride (SF6).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...