Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lasers Surg Med ; 54(7): 1010-1026, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35753039

RESUMEN

OBJECTIVES: For the development and validation of diagnostic procedures based on microscopic methods, knowledge about the imaging depth and achievable resolution in tissue is crucial. This poses the challenge to develop a microscopic artificial phantom focused on the microscopic instead of the macroscopic optical tissue characteristics. METHODS: As existing artificial tissue phantoms designed for image forming systems are primarily targeted at wide field applications, they are unsuited for reaching the formulated objective. Therefore, a microscopy- and microendoscopy-suited artificial tissue phantom was developed and characterized. It is based on a microstructured glass surface coated with fluorescent beads at known depths covered by a scattering agent with modifiable optical properties. The phantom was examined with different kinds of microscopy systems in order to characterize its quality and stability and to demonstrate its usefulness for instrument comparison, for example, regarding structural as well as fluorescence lifetime analysis. RESULTS: The analysis of the manufactured microstructured glass surfaces showed high regularity in their physical dimensions in accordance with the specifications. Measurements of the optical parameters of the scattering medium were consistent with simulations. The fluorescent beads coating proved to be stable for a respectable period of time (about a week). The developed artificial tissue phantom was successfully used to detect differences in image quality between a research microscope and an endoscopy based system. Plausible causes for the observed differences could be derived based on the well known microstructure of the phantom. CONCLUSIONS: The artificial tissue phantom is well suited for the intended use with microscopic and microendoscopic systems. Due to its configurable design, it can be adapted to a wide range of applications. It is especially targeted at the characterization and calibration of clinical imaging systems that often lack extensive positioning capabilities such as an intrinsic z-stage.


Asunto(s)
Microscopía , Imagen Óptica , Fantasmas de Imagen
2.
Lasers Surg Med ; 54(4): 588-599, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33616996

RESUMEN

BACKGROUND AND OBJECTIVES: Light delivery is an essential part of therapy forms like photodynamic therapy (PDT), laser-induced thermotherapy, and endovenous laser therapy. While there are approaches to the light application for all three therapies, there is no diffuser that can be used for all three approaches. This diffuser must meet the following criteria: Homogeneous radiation profile over a length of 40 mm, efficient light extraction in the diffuser area, mechanical breakage resistance as well as thermal stability when applying high power. STUDY DESIGN/MATERIALS AND METHODS: An ultrashort pulse laser was used to inscribe inhomogeneities into the core of a fused-silica fiber core while scanning the laser focus within a linear arrangement of cuboids centered around the fiber axis. The manufactured diffuser was optically and mechanically characterized and examined to determine the maximum power that can be applied in a tissue environment. RESULTS: Based on the analysis of all examined diffusers, the manufactured diffuser exhibits an emission efficiency ε = (81.5 ± 5.9)%, an intensity variability of (19 ± 5)% between distal and proximal diffuser end, and a minimum bending radius Rb = (15.4 ± 1.5) mm. It was taken advantage of the fact that the outer areas of the fiber core do not undergo any structural changes due to the machining and therefore do not suffer a major loss of stability. Tissue experiments revealed that a maximal power of 15 W was deliverable from the diffuser without harming the diffuser itself. CONCLUSIONS: It could be shown that a diffuser manufactured by ultrafast-laser processing can be used for low power applications as well as for high power applications. Further tests have to show whether the mechanical stability is still maintained after the application of high power in a tissue environment. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Asunto(s)
Hipertermia Inducida , Terapia por Láser , Fotoquimioterapia , Rayos Láser , Luz
3.
Biomed Opt Express ; 11(7): 3601-3617, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33014554

RESUMEN

The influence of inhomogeneities in the emission characteristics of optical fiber diffusers on the light distribution within biological tissue was evaluated by Monte Carlo (MC) simulations and by experiments on optical phantoms. Due to the strong scattering of light within biological tissue, inhomogeneities in the emission profile become blurred within a short light propagation distance, so that the light distribution within the tissue approaches that of a homogeneous diffuser. The degree of feature vanishing in the light distribution is mainly determined by the width of the inhomogeneities. It was shown that the influence of local inhomogeneities on top of a homogeneous light distribution fades away very effectively within 1 mm of tissue depth, which results in a light distribution very close to that for a homogeneously emitting diffuser. Emission profiles composed of multiple narrow peaks distributed over the full diffuser length with a peak-to-peak distance of less than 2 mm result in an almost homogeneous light distribution after approximately 1 mm of tissue depth. While this article is focused on the impact of diffuser inhomogeneities on the light distribution within the tissue, the importance of further investigations on the related thermal effects is also discussed.

4.
Sci Rep ; 10(1): 5701, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231344

RESUMEN

In order to evaluate the technical adaptability of a type of disposable endoscope compared to reusable flexible endoscopes, in vitro and in vivo studies were conducted. A disposable digital ureteroscope ("chip on tip") and two reusable endoscopes were investigated with respect to spatial resolution, geometric distortion in air and water the maximum. Additionally, the clinical performance of the disposable device was tested during clinical procedures (n = 20). The disposable endoscope showed an optical resolution of 6.72 lines/mm at 10 mm distance, similar to the other devices. In comparison, the disposable endoscope showed a barrel-shaped image distortion in air of -24.2%, which is in the middle range, but was best under water (-8.6%). The bendability of 297° (275 µm fiber) and 316° (empty channel, 1.5 F basket) and the maximum irrigation (1 m: 58.1 ml/min, 2 m: 91.9 ml/min) were convincing. Clinically the maneuverability was very good in (13/20), good or satisfactory in (7/20). Visibility was evaluated as very good in (11/20), just in (1/20) either satisfactory or sufficient. The consistency of visibility was not affected in (19/20). In all cases there were no adverse events. The technical examination and clinical application of the disposable endoscope are of equal quality compared to reusable devices. Disposable endoscopes can be an alternative to reusable devices, but economic aspects such as reduction of repair costs, sterilization effort and additional waste must be taken into account.


Asunto(s)
Equipo Reutilizado , Ureteroscopios , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ureteroscopía/instrumentación , Ureteroscopía/métodos , Cálculos Urinarios/diagnóstico , Cálculos Urinarios/cirugía , Enfermedades Urológicas/diagnóstico , Adulto Joven
5.
Biomed Opt Express ; 9(11): 5115-5128, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30460117

RESUMEN

The fragmentation efficiency on Bego artificial stones during lithotripsy and the propulsive effect (via video tracking) was investigated for a variety of laser settings. A variation of the laser settings (pulse energy, pulse duration, repetition rate) altered the total application time required for stone fragmentation, the stone break up time, and the propulsion. The obtained results can be used to develop lithotripsy devices providing an optimal combination of low stone propulsion and high fragmentation efficacy, which can then be evaluated in a clinical setting. Additionally, the fluorescence of human kidney stones was inspected endoscopically in vivo. Fluorescence light can be used to detect stone-free areas or to clearly distinguish calculi from surrounding tissue or operation tools.

6.
J Biomed Opt ; 23(9): 1-9, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30251487

RESUMEN

Knowledge of tissue optical properties, in particular the absorption µa and the reduced scattering coefficient µs', is required for diagnostic and therapeutic applications in which the light distribution during treatment has to be known. As it is generally very difficult to obtain this information with sufficient accuracy in vivo, optical properties are often approximately determined on ex vivo tissue samples. In this case, the obtained optical properties may strongly depend on the sample preparation. The extent of the expectable preparation-dependent differences was systematically investigated in comparative measurements on dissected and homogenized porcine tissue samples (liver, lung, brain, and muscle). These measurements were performed at wavelengths 520, 635, 660, and 785 nm, using a dual-step reflectance device and at a spectral range of 515 to 800 nm with an integrating sphere setup. In a third experiment, the density of tissue samples (dissected and homogenized) was investigated, as the characteristic of the packaging of internal tissue structures strongly influences the absorption and scattering. The standard errors of the obtained absorption and reduced scattering coefficients were found to be reduced in case of homogenized tissue. Homogenizing the tissues also allows a much easier and faster sample preparation, as macroscopic internal tissue structures are destroyed in the homogenized tissue so that a planar tissue sample with well-defined thickness can easily and accurately be prepared by filling the tissue paste into a cuvette. Consequently, a better reproducibility result was obtained when using homogenized samples. According to the density measurements accomplished for dissected and homogenized tissue samples, all types of tissues, except lung, showed a decrease in the density due to the homogenization process. The presented results are in good agreement for µs' regardless of the preparation procedure, whereas µa differs, probably influenced by blood content and dehydration. Because of faster and easier preparation and easier sample positioning, homogenization prior to measurement seems to be suitable for investigating the optical properties ex vivo. Additionally, by means of using the homogenization process, the sample size and thickness do not need to be particularly large, as is the case for most biopsies from the OR.


Asunto(s)
Disección/métodos , Dispersión de Radiación , Manejo de Especímenes/métodos , Animales , Hígado/química , Hígado/diagnóstico por imagen , Pulmón/química , Pulmón/diagnóstico por imagen , Reproducibilidad de los Resultados , Porcinos
7.
Lasers Surg Med ; 50(4): 333-339, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29266385

RESUMEN

OBJECTIVES: Ureteroscopic laser lithotripsy is an important and widely used method for destroying ureter stones. It represents an alternative to ultrasonic and pneumatic lithotripsy techniques. Although these techniques have been thoroughly investigated, the influence of some physical parameters that may be relevant to further improve the treatment results is not fully understood. One crucial topic is the propulsive stone movement induced by the applied laser pulses. To simplify and speed up the optimization of laser parameters in this regard, a video tracking method was developed in connection with a vertical column setup that allows recording and subsequently analyzing the propulsive stone movement in dependence of different laser parameters in a particularly convenient and fast manner. MATERIALS AND METHODS: Pulsed laser light was applied from below to a cubic BegoStone phantom loosely guided within a vertical column setup. The video tracking method uses an algorithm to determine the vertical stone position in each frame of the recorded scene. The time-dependence of the vertical stone position is characterized by an irregular series of peaks. By analyzing the slopes of the peaks in this signal it was possible to determine the mean upward stone velocity for a whole pulse train and to compare it for different laser settings. For a proof of principle of the video tracking method, a specific pulse energy setting (1 J/pulse) was used in combination with three different pulse durations: short pulse (0.3 ms), medium pulse (0.6 ms), and long pulse (1.0 ms). The three pulse durations were compared in terms of their influence on the propulsive stone movement in terms of upward velocity. Furthermore, the propulsions induced by two different pulse energy settings (0.8 J/pulse and 1.2 J/pulse) for a fixed pulse duration (0.3 ms) were compared. A pulse repetition rate of 10 Hz was chosen for all experiments, and for each laser setting, the experiment was repeated on 15 different freshly prepared stones. The latter set of experiments was compared with the results of previous propulsion measurements performed with a pendulum setup. RESULTS: For a fixed pulse energy (1 J/pulse), the mean upward propulsion velocity increased (from 120.0 to 154.9 mm · s-1 ) with decreasing pulse duration. For fixed pulse duration (0.3 ms), the mean upward propulsion velocity increased (from 91.9 to 123.3 mm · s-1 ) with increasing pulse energy (0.8 J/pulse and 1.2 J/pulse). The latter result corresponds roughly to the one obtained with the pendulum setup (increase from 61 to 105 mm · s-1 ). While the mean propulsion velocities for the two different pulse energies were found to differ significantly (P < 0.001) for the two experimental and analysis methods, the standard deviations of the measured mean propulsion velocities were considerably smaller in case of the vertical column method with video tracking (12% and 15% for n = 15 freshly prepared stones) than in case of the pendulum method (26% and 41% for n = 50 freshly prepared stones), in spite of the considerably smaller number of experiment repetitions ("sample size") in the first case. CONCLUSION: The proposed vertical column method with video tracking appears advantageous compared to the pendulum method in terms of the statistical significance of the obtained results. This may partly be understood by the fact that the entire motion of the stones contributes to the data analysis, rather than just their maximum distance from the initial position. The key difference is, however, that the pendulum method involves only one single laser pulse in each experiment run, which renders this method rather tedious to perform. Furthermore, the video tracking method appears much better suited to model a clinical lithotripsy intervention that utilizes longer series of laser pulses at higher repetition rates. The proposed video tracking method can conveniently and quickly deliver results for a large number of laser pulses that can easily be averaged. An optimization of laser settings to achieve minimal propulsive stone movement should thus be more easily feasible with the video tracking method in connection with the vertical column setup. Lasers Surg. Med. 50:333-339, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Láseres de Estado Sólido/uso terapéutico , Litotripsia por Láser/métodos , Fantasmas de Imagen , Cálculos Ureterales/terapia , Humanos , Técnicas In Vitro , Terapia por Luz de Baja Intensidad/métodos , Modelos Anatómicos , Reproducibilidad de los Resultados , Ureteroscopía/métodos , Grabación en Video/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA