Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 138(3): 4032113, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26630498

RESUMEN

Simulation of flow in the human lung is of great practical interest as a means to study the detailed flow patterns within the airways for many physiological applications. While computational simulation techniques are quite mature, lung simulations are particularly complicated due to the vast separation of length scales between upper airways and alveoli. Many past studies have presented numerical results for truncated airway trees, however, there are significant difficulties in connecting such results with respiratory airway models. This article presents a new modeling paradigm for flow in the full lung, based on a conjugate fluid-porous formulation where the upper airway is considered as a fluid region with the remainder of the lung being considered as a coupled porous region. Results are presented for a realistic lung geometry obtained from computed tomography (CT) images, which show the method's potential as being more efficient and practical than attempting to directly simulate flow in the full lung.


Asunto(s)
Aire , Simulación por Computador , Hidrodinámica , Pulmón , Humanos , Procesamiento de Imagen Asistido por Computador , Pulmón/diagnóstico por imagen , Porosidad , Presión , Alveolos Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
Phys Rev Lett ; 109(5): 054504, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006180

RESUMEN

The presented study examines the energetics of confined fluid flow in a rotating reference frame. Parallels are drawn to the corresponding scenario of rectilinear motion, where ejection of fluid results in linear propulsion of the frame. Absorption of flow energy into the frame motion leads to cooling of the ejected fluid. Relevance of the observed energetics to the temperature separation phenomenon in Ranque-Hilsch vortex tubes is discussed.

3.
J Biomech Eng ; 124(5): 617-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12405605

RESUMEN

A dual-pressure boundary condition has been developed for computational modelling of bifurcating conduits. The condition involves the imposition of a constant pressure on one branch while adjusting iteratively the pressure on the other branch until the desired flow division is obtained. The dual-pressure condition eliminates the need for specifying fully-developed flow conditions, which thereby enables significant reduction of the outlet branch lengths. The dual-pressure condition is suitable for both steady and time-periodic simulations of laminar or turbulent flows.


Asunto(s)
Arteria Carótida Común/fisiología , Simulación por Computador , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Arteria Carótida Externa/fisiología , Arteria Carótida Interna/fisiología , Hemorreología/métodos , Flujo Pulsátil , Control de Calidad , Sensibilidad y Especificidad , Resistencia al Corte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...