Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Brain Sci ; 11(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34679357

RESUMEN

Antipsychotics (APDs) represent the main pharmacological strategy in the treatment of schizophrenia; however, their administration often may result in severe adverse effects, such as extrapyramidal symptoms. Typically, dystonic movements are considered the result of impaired function and/or abnormalities of dopaminergic neurotransmission/signaling in the basal ganglia. The catechol O-methyltransferase (COMT) gene is located within the 22q11.2 region, and its product is an enzyme involved in transferring a methyl group from S-adenosylmethionine to catecholamines, including dopamine. Studies showed that COMT Val158Met polymorphism modifies enzymatic activity and, consequently, synaptic dopamine concentration in specific brain areas. We identified a patient with 22q11.2 deletion syndrome presenting with cervical and trunk dystonia after paliperidone administration, which persisted even after drug discontinuation. Given the patient's genetic condition, we hypothesized that the dopaminergic dysfunction had been aggravated by COMT involvement, thus causing dystonia. In line with this hypothesis, we carried out a study on psychiatric patients in chronic treatment with APD to evaluate the distribution of the COMT Val158Met polymorphism and its role in the onset of adverse extrapyramidal symptoms. The study included four patients with dystonia after administration of APDs compared to 17 patients who never presented adverse drug reactions. Our data suggest that the Val/Val and Met/Met polymorphisms of the COMT gene are associated with a protective effect for the development of collateral extrapyramidal symptoms in patients treated with APDs, while the Val/Met genotype could be considered a risk factor for the development of dystonia after APDs administration.

2.
J Autism Dev Disord ; 49(6): 2337-2347, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30726535

RESUMEN

To date, the phenotypic significance of EEG abnormalities in patients with ASD is unclear. In a population affected by ASD we aimed to evaluate: the phenotypic characteristics; the prevalence of EEG abnormalities; the potential correlations between EEG abnormalities and behavioral and cognitive variables. Sixty-nine patients with ASD underwent cognitive or developmental testing, language assessment, and adaptive behavior skills evaluation as well as sleep/wake EEG recording. EEG abnormalities were found in 39.13% of patients. EEG abnormalities correlated with autism severity, hyperactivity, anger outbursts, aggression, negative or destructive behavior, motor stereotypies, intellectual disability, language impairment and self-harm. Our findings confirmed that EEG abnormalities are present in the ASD population and correlate with several associated phenotypic features.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/fisiopatología , Electroencefalografía/métodos , Índice de Severidad de la Enfermedad , Adolescente , Agresión/fisiología , Agresión/psicología , Trastorno del Espectro Autista/psicología , Biomarcadores , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/fisiopatología , Discapacidad Intelectual/psicología , Masculino , Proyectos Piloto , Estudios Retrospectivos , Conducta Estereotipada/fisiología , Adulto Joven
3.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656860

RESUMEN

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Asunto(s)
Anomalías Múltiples/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variación Genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Adolescente , Adulto , Línea Celular , Niño , Exones/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Linaje , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...