Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012307

RESUMEN

The genetic modification of T cells has advanced cellular immunotherapies, yet the delivery of biologics specifically to T cells remains challenging. Here we report a suite of methods for the genetic engineering of cells to produce extracellular vesicles (EVs)-which naturally encapsulate and transfer proteins and nucleic acids between cells-for the targeted delivery of biologics to T cells without the need for chemical modifications. Specifically, the engineered cells secreted EVs that actively loaded protein cargo via a protein tag and that displayed high-affinity T-cell-targeting domains and fusogenic glycoproteins. We validated the methods by engineering EVs that delivered Cas9-single-guide-RNA complexes to ablate the gene encoding the C-X-C chemokine co-receptor type 4 in primary human CD4+ T cells. The strategy is amenable to the targeted delivery of biologics to other cell types.

2.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808729

RESUMEN

Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to quantify the substantial degree to which antibody labeling can underestimate the absolute number of proteins present on an EV. Finally, we demonstrate use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.

4.
Small ; 18(19): e2200125, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35388947

RESUMEN

The ability of pathogens to develop drug resistance is a global health challenge. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody (mAb) therapies and vaccine-induced sera. Decoy nanoparticles-cell-mimicking particles that bind and inhibit virions-are an emerging class of therapeutics that may overcome such drug resistance challenges. To date, quantitative understanding as to how design features impact performance of these therapeutics is lacking. To address this gap, this study presents a systematic, comparative evaluation of various biologically derived nanoscale vesicles, which may be particularly well suited to sustained or repeated administration in the clinic due to low toxicity, and investigates their potential to inhibit multiple classes of model SARS-CoV-2 virions. A key finding is that such particles exhibit potent antiviral efficacy across multiple manufacturing methods, vesicle subclasses, and virus-decoy binding affinities. In addition, these cell-mimicking vesicles effectively inhibit model SARS-CoV-2 variants that evade mAbs and recombinant protein-based decoy inhibitors. This study provides a foundation of knowledge that may guide the design of decoy nanoparticle inhibitors for SARS-CoV-2 and other viral infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/uso terapéutico , Antivirales , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
bioRxiv ; 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34909773

RESUMEN

The ability of pathogens to develop drug resistance is a global health challenge. The SARS-CoV-2 virus presents an urgent need wherein several variants of concern resist neutralization by monoclonal antibody therapies and vaccine-induced sera. Decoy nanoparticles-cell-mimicking particles that bind and inhibit virions-are an emerging class of therapeutics that may overcome such drug resistance challenges. To date, we lack quantitative understanding as to how design features impact performance of these therapeutics. To address this gap, here we perform a systematic, comparative evaluation of various biologically-derived nanoscale vesicles, which may be particularly well-suited to sustained or repeated administration in the clinic due to low toxicity, and investigate their potential to inhibit multiple classes of model SARS-CoV-2 virions. A key finding is that such particles exhibit potent antiviral efficacy across multiple manufacturing methods, vesicle subclasses, and virus-decoy binding affinities. In addition, these cell-mimicking vesicles effectively inhibit model SARS-CoV-2 variants that evade monoclonal antibodies and recombinant protein-based decoy inhibitors. This study provides a foundation of knowledge that may guide the design of decoy nanoparticle inhibitors for SARS-CoV-2 and other viral infections.

6.
Methods Mol Biol ; 1740: 109-124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29388139

RESUMEN

Extracellular vesicles (EVs) are secreted nanoscale particles that transfer biomolecular cargo between cells in multicellular organisms. EVs play a variety of roles in intercellular communication and are being explored as potential vehicles for delivery of therapeutic biomolecules. However, EVs are highly heterogeneous in composition and biogenesis route, and this poses substantial challenges for understanding the role of EVs in biology and for harnessing these mechanisms for therapeutic applications, for which purifying therapeutic EVs from mixed EV populations may be necessary. Currently, technologies for isolating EV subsets are limited by overlapping physical properties among EV subsets. To meet this need, here we report an affinity chromatography-based method for enriching a specific EV subset from a heterogeneous EV starting population. By displaying an affinity tagged protein (tag-protein) on the EV surface, tagged EVs may be specifically isolated using simple affinity chromatography. Moreover, recovered EVs are enriched in the tag-protein relative to the starting population of EVs and relative to EVs purified from cell culture supernatant by standard differential centrifugation. Furthermore, chromatographically enriched EVs confer enhanced delivery of a cargo protein to recipient cells (via enhancing the amount of cargo protein per EV) relative to EVs isolated by centrifugation. Altogether, affinity chromatographic enrichment of EV subsets is a viable and facile strategy for investigating EV biology and for harnessing EVs for therapeutic applications.


Asunto(s)
Cromatografía de Afinidad/métodos , Líquido Extracelular , Vesículas Extracelulares , Animales , Células Cultivadas , Humanos
7.
Adv Genet ; 98: 155-175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28942793

RESUMEN

Extracellular vesicles (EVs) are membrane-enclosed particles that are secreted by nearly all cells and play an important role in intercellular communication by transporting protein and nucleic acids between cells. EV-mediated processes shape phenomena as diverse as cancer progression, immune function, and wound healing. The natural role of EVs in encapsulating and delivering cargo to modify cellular function highlights the potential to use these particles as therapeutic delivery vehicles. In this chapter, we describe emerging strategies for EV engineering and consider how different approaches to EV production, purification, and design may impact the efficacy of EV-based therapeutics.


Asunto(s)
Portadores de Fármacos , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/genética , Animales , Transporte Biológico , Fusión Celular , ADN/genética , Exosomas/genética , Vesículas Extracelulares/genética , Humanos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
8.
Tissue Eng Part A ; 23(21-22): 1274-1282, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28586292

RESUMEN

Extracellular vesicles (EVs) are nanometer-scale particles that are secreted by cells and mediate intercellular communication by transferring biomolecules between cells. Harnessing this mechanism for therapeutic biomolecule delivery represents a promising frontier for regenerative medicine and other clinical applications. One challenge to realizing this goal is that to date, our understanding of which factors affect EV uptake by recipient cells remains incomplete. In this study, we systematically investigated such delivery questions in the context of breast cancer cells, which are one of the most well-studied cell types with respect to EV delivery and therefore comprise a facile model system for this investigation. By displaying various targeting peptides on the EV surface, we observed that although displaying GE11 on EVs modestly increased uptake by MCF-7 cells, neuropeptide Y (NPY) display had no effect on uptake by the same cells. In contrast, neurotensin (NTS) and urokinase plasminogen activator (uPA) display reduced EV uptake by MDA-MB-231 cells. Interestingly, EV uptake rate did not depend on the source of the EVs; breast cancer cells demonstrated no increase in uptake on administration of breast cancer-derived EVs in comparison to HEK293FT-derived EVs. Moreover, EV uptake was greatly enhanced by delivery in the presence of polybrene and spinoculation, suggesting that maximal EV uptake rates are much greater than those observed under basal conditions in cell culture. By investigating how the cell's environment might provide cues that impact EV uptake, we also observed that culturing cells on soft matrices significantly enhanced EV uptake, compared to culturing on stiff tissue culture polystyrene. Each of these observations provides insights into the factors impacting EV uptake by breast cancer cells, while also providing a basis of comparison for systematically evaluating and perhaps enhancing EV uptake by various cell types.


Asunto(s)
Neoplasias de la Mama/metabolismo , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Femenino , Células HEK293 , Bromuro de Hexadimetrina/farmacología , Humanos , Biblioteca de Péptidos , Receptores de Superficie Celular/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...