Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 69(4): 601-12, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21985558

RESUMEN

Two aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Animales , Apoproteínas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Botrytis/fisiología , Mariposas Diurnas/fisiología , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/genética , Flores/genética , Flores/efectos de la radiación , Fusarium/fisiología , Luz , Complejo Mediador/genética , Complejo Mediador/metabolismo , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Fotoperiodo , Fitocromo B/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Transducción de Señal/fisiología , Temperatura , Thysanoptera/fisiología , Factores de Transcripción/genética , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 107(10): 4776-81, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20176939

RESUMEN

Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutación , Fitocromo/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Clorofila/metabolismo , Ritmo Circadiano , Germinación/efectos de los fármacos , Germinación/efectos de la radiación , Giberelinas/farmacología , Luz , Morfogénesis/efectos de los fármacos , Morfogénesis/efectos de la radiación , Fototropismo/efectos de los fármacos , Fototropismo/efectos de la radiación , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
3.
Plant J ; 58(4): 629-40, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19187043

RESUMEN

Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Sub-optimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one requiring TFL1 and another requiring ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants, which have a constitutive photoperiodic response. In contrast to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. Gene expression profiles revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes, and identified CCA1 and SOC1/AGL20 as being important cross-talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotoperiodo , ARN de Planta/genética , Temperatura , Factores de Transcripción/genética
4.
Genetics ; 180(3): 1467-74, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18791256

RESUMEN

TERMINAL FLOWER 1 (TFL1) encodes a protein with similarity to animal phosphatidylethanolamine-binding proteins and is required for normal trafficking to the protein storage vacuole. In Arabidopsis thaliana the tfl1 mutation produces severe developmental abnormalities. Here we show that most aspects of the tfl1 phenotype are lost in the cry1 cry2 double-mutant background lacking cryptochromes 1 and 2. The inhibition of hypocotyl growth by light is reduced in the tfl1 mutant but this effect is absent in the cry1 or cry2 mutant background. Although the promotion of flowering under long rather than short days is a key function of cryptochromes, in the tfl1 background, cryptochromes promoted flowering under short days. Thus, normal CRY control of photoperiod-dependent flowering and hypocotyl growth inhibition requires a functional TFL1 gene.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Flavoproteínas/fisiología , Flores/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Supresión Genética , Arabidopsis/genética , Criptocromos , Mutación/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA