Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 127: 42-52, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30836108

RESUMEN

This study focused on defining the in vitro behavior of amphiphilic poly-N-vinylpyrrolidone (Amph-PVP) nanoparticles toward whole blood, blood plasma and blood cells in order to assess nanoparticle blood compatibility. In addition, possible effects on endothelium cell growth/viability were evaluated. The Amph-PVP nanoparticles were formed via self-assembling in aqueous media and composed of a hydrophobic alkyl core and a hydrophilic PVP outer shell. Their blood compatibility was evaluated by investigating their effect on red blood cells (RBCs) or erythrocytes, white blood cells (WBCs) or leukocytes, platelets (PLTs) and on complement system activation. Our results clearly demonstrate that the Amph-PVP nanoparticles are stable in presence of blood serum, have no significant effects on the function of RBCs, WBCs, PLTs and complement system activation. The Amph-PVP nanoparticles did not show considerable hemolytic or inflammatory effect, neither influence on platelet aggregation, coagulation process, or complement activation at the tested concentration range of 0.05-0.5 mg/ml. The Amph-PVP nanoparticles did not exhibit any significant effect on HMEC-1 microvascular skin endothelial cells' growth in in vitro experiments. The excellent blood compatibility of the Amph-PVP nanoparticles and the lack of effect on endothelium cell growth/viability represent a crucial feature dictating their further study as novel drug delivery systems.


Asunto(s)
Materiales Biocompatibles , Plaquetas/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Leucocitos/efectos de los fármacos , Nanopartículas/toxicidad , Pirrolidinonas/toxicidad , Línea Celular , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Humanos , Técnicas In Vitro , Nanopartículas/química , Pirrolidinonas/química , Piel/irrigación sanguínea , Piel/citología
2.
Toxicol Rep ; 6: 111-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622905

RESUMEN

The world biodiesel production is increasing at a rapid rate. Despite its perceived safety for the environment, more detailed toxicity studies are mandatory, especially in the field of aquatic toxicology. While considerable attention has been paid to biodiesel combustion emissions, the toxicity of biodiesel in the aquatic environment has been poorly understood. In our study, we used an algae culture growth-inhibition test (OECD 201) for the comparison of the toxicity of B100 (pure biodiesel), produced by methanol transesterification of waste cooking oil (yellow grease), B0 (petroleum diesel fuel) and B20 (diesel-biodiesel blended of 20% biodiesel and 80% petroleum diesel fuel by volume). Two marine diatoms Attheya ussuriensis and Chaetoceros muelleri, the red algae Porphyridium purpureum and Raphidophyte Heterosigma akashiwo were employed as the aquatic test organisms. A sample of biodiesel from waste cooking oil without dilution with petroleum diesel (B100) showed the highest level of toxicity for the microalgae A. ussuriensis, C. muelleri and H. akashiwo, compared to hexane, methanol, petroleum diesel (B0) and diluted sample (B20). The acute EC50 in the growth-inhibition test (96 h exposure) of B100 for the four species was in the range of 3.75-23.95 g/L whereas the chronic toxicity EC50 (7d exposure) was in the range of 0.42-16.09 g/L.

3.
Toxicol Rep ; 6: 120-125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30671347

RESUMEN

This research article investigates the particulate matter originated from the exhaust emissions of 20 bus models, within the territory of Vladivostok, Russian Federation. The majority of evaluated buses (17 out of 20) had emissions of large particles with sizes greater than 400 µm, which account for more than 80% of all measured particles. The analysis of the elemental composition showed that the exhaust emissions contained Al, Cd, Cu, Fe, Mg, Ni, Pb, and Zn, with the concentration of Zn prevailing in all samples by two to three orders of magnitude higher than the concentrations of the other elements.

4.
Sci Rep ; 8(1): 17169, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464198

RESUMEN

Arc welding operations are considered to be risky procedures by generating hazardous welding fume for human health. This study focuses on the key characteristics, as well as dispersion models, of welding fumes within a work zone. Commercial and widely used types of electrodes with various types of covering (rutile, basic, acidic and rutile-cellulose) were used in a series of experiments on arc welding operations, under 100 and 150 amps of electric current. According to the results of this study, maximum levels of pollution with particles of PM10 fraction occur in the workspace during arc welding operations. Disregarding the types of electrodes used, the 3D models of dispersion of the РМ10 particles at the floor plane exhibit corrugated morphologies while also demonstrate high concentrations of the РМ10 particles at distances 0-3 m and 4-5 m from the emission source. The morphology of these particles is represented by solid and hollow spheres, 'nucleus-shell' structures, perforated spheres, sharp-edged plates, agglomerates of the tree-like (coral) shape. At last the bifractional mechanism of fume particle formation for this type of electrodes is also shown and described. In this article results are reported, which demonstrate the hazards of the arc welding process for human health. The results of the characterization of WFs reported improve our understanding of risks that these operations pose to human health and may strengthen the need for their control and mitigation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Electrodos , Material Particulado/análisis , Humo , Soldadura/métodos , Humanos
5.
Toxicol Rep ; 5: 224-230, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854593

RESUMEN

Despite the fact that environmental pollution due to motorcycle exhaust gases reports a great increase, motorcycle production exhibits a great increase through the last years. Countries of Asia and Africa are reported to be the major regions where two-wheeled vehicles are a major transportation mode, with tens of millions of units sold per year. Motorcycle exhaust particles are considered to be the major contributor to environmental pollution due to their airborne dispersion, containing great amount of polycyclic aromatic hydrocarbons (PAHs). This study aims at reporting an objective analysis of the main sources of the ambient air pollution as also particle size distribution and chemical composition analysis of particulate matter originated from the exhausts of two-wheeled vehicles used in the territory of Vladivostok, Russia. Various types of two-wheeled vehicles were examined (motorcycles, ATVs, scooters and wet bikes) using different types of engine and fuel system. Experimental results showed that there was no clear relation to the particle size distribution with the engine displacement of motorcycle and the number of strokes and the fuel system. Instead, there were reported two clear assumptions. The first one is that regarding to the motorcycle brand, a few samples did not exhibit a great percentage of PM10 fraction. The second one is that more modern vehicles, that have a harmful gas afterburning system, are usually the source of an increased percentage of PM10 emitted particles. At last, it should be mentioned that the laser particle size analysis method is capable of determining the particle sizes after their agglomeration whereas the optical morphometry method allows to determine the real particle size of emissions. In conclusion, it can be pointed out that the agglomeration of particles can lead to the reduction in the toxicity of particles emissions originated from two wheeled-vehicles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA