Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neurosurg ; : 1-8, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394660

RESUMEN

OBJECTIVE: The aim of this study was to compare outcomes of direct targeting in deep brain stimulation (DBS) for essential tremor using 7T MRI versus 3T MRI. The authors hypothesized that 7T MRI direct targeting would be noninferior to 3T MRI in early tremor outcomes. METHODS: A retrospective study was conducted on patients undergoing unilateral thalamic DBS for essential tremor between 2021 and 2023. Two matched cohorts were assessed, one using 7T MRI and the other using 3T MRI for surgical planning. The primary endpoint was the percentage improvement in the Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores. Additionally, the authors assessed optimized programming settings and variance in electrode position on postoperative imaging. Demographic and clinical data were compared using the nonparametric Mann-Whitney U-test. The squared Euclidean distance of each contact from the group mean centroid was calculated and averaged across the entire cohort to provide the variance (i.e., the mean squared distance) of electrode contact position. RESULTS: A total of 34 patients were analyzed, with 17 in each cohort. There were no significant differences in demographic information or mean surgical dates between the groups. There were no differences in intraoperative target repositioning or adverse events. The 7T group had a significantly greater TRS improvement than the 3T group (64.9% ± 11.4% vs 50.9% ± 16.4%, p = 0.004). Patients in the 7T cohort also had a lower mean stimulation current compared with those in the 3T cohort (2.0 ± 0.8 mA vs 2.7 ± 0.9 mA, p = 0.01). Image evaluation revealed that although the mean electrode position was comparable between 7T and 3T, the 7T electrode positioning was more clustered, indicating a lower variance in the final electrode location. The mean Euclidean distance between the individual electrode tips and the group centroid was significantly less at 7T than at 3T (1.82 ± 0.68 mm vs 2.75 ± 0.81 mm, p = 0.001). CONCLUSIONS: Despite concerns for increased artifacts and distortions at 7T, the authors show that these effects can be mitigated with an appropriate workflow, leading to improved surgical outcomes with direct targeting using 7T MRI. Their results suggest similar accuracy but greater precision in targeting with 7T MRI compared with 3T MRI, resulting in lower stimulation currents and improved tremor reduction. Future studies are needed to assess outcomes related to 7T MRI in targeting other subcortical structures.

2.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38247051

RESUMEN

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Consenso , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cabeza , Imagen por Resonancia Magnética/métodos , Algoritmos , Mapeo Encefálico/métodos
3.
Invest Radiol ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193790

RESUMEN

OBJECTIVES: Detection of infratentorial demyelinating lesions in multiple sclerosis (MS) presents a challenge in magnetic resonance imaging (MRI), a difficulty that is further heightened in 7 T MRI. This study aimed to assess the efficacy of a novel MRI approach, lesion-attenuated magnetization-prepared gradient echo acquisition (LAMA), for detecting demyelinating lesions within the posterior fossa and upper cervical spine on 7 T MRI and contrast its performance with conventional double-inversion recovery (DIR) and T2-weighted turbo spin echo sequences. MATERIALS AND METHODS: We conducted a retrospective cross-sectional study in 42 patients with a confirmed diagnosis of MS. All patients had 7 T MRI that incorporated LAMA, 3D DIR, and 2D T2-weighted turbo spin echo sequences. Three readers assessed lesion count in the brainstem, cerebellum, and upper cervical spinal cord using both DIR and T2-weighted images in one session. In a separate session, LAMA was analyzed alone. Contrast-to-noise ratio was also compared between LAMA and the conventional sequences. Lesion counts between methods were assessed using nonparametric Wilcoxon signed rank test. Interrater agreement in lesion detection was estimated by intraclass correlation coefficients. RESULTS: LAMA identified a significantly greater number of lesions than DIR + T2 (mean 6.4 vs 3.0; P < 0.001). LAMA also exhibited better interrater agreement (intraclass correlation coefficient [95% confidence interval], 0.75 [0.41-0.88] vs 0.61 [0.35-0.78]). The contrast-to-noise ratio for LAMA (3.7 ± 0.9) significantly exceeded that of DIR (1.94 ± 0.7) and T2 (1.2 ± 0.7) (all P's < 0.001). In cases with no lesions detected using DIR + T2, at least 1 lesion was identified in 83.3% with LAMA. Across all analyzed brain regions, LAMA consistently detected more lesions than DIR + T2. CONCLUSIONS: LAMA significantly improves the detection of infratentorial demyelinating lesions in MS patients compared with traditional methods. Integrating LAMA with standard magnetization-prepared 2 rapid acquisition gradient echo acquisition provides a valuable tool for accurately characterizing the extent of MS disease.

4.
NPJ Parkinsons Dis ; 10(1): 13, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191546

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.

5.
ArXiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461418

RESUMEN

This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.

6.
J Magn Reson Imaging ; 57(6): 1621-1640, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36748806

RESUMEN

Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Hígado , Hierro , Abdomen , Encéfalo , Mapeo Encefálico
7.
NMR Biomed ; 36(3): e4847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259249

RESUMEN

Substantial cortical gray matter tissue damage, which correlates with clinical disease severity, has been revealed in multiple sclerosis (MS) using advanced magnetic resonance imaging (MRI) methods at 3 T and the use of ultra-high field, as well as in histopathology studies. While clinical assessment mainly focuses on lesions using T 1 - and T 2 -weighted MRI, quantitative MRI (qMRI) methods are capable of uncovering subtle microstructural changes. The aim of this ultra-high field study is to extract possible future MR biomarkers for the quantitative evaluation of regional cortical pathology. Because of their sensitivity to iron, myelin, and in part specifically to cortical demyelination, T 1 , T 2 , R 2 * , and susceptibility mapping were performed including two novel susceptibility markers; in addition, cortical thickness as well as the volumes of 34 cortical regions were computed. Data were acquired in 20 patients and 16 age- and sex-matched healthy controls. In 18 cortical regions, large to very large effect sizes (Cohen's d ≥ 1) and statistically significant differences in qMRI values between patients and controls were revealed compared with only four regions when using more standard MR measures, namely, volume and cortical thickness. Moreover, a decrease in all susceptibility contrasts ( χ , χ + , χ - ) and R 2 * values indicates that the role of cortical demyelination might outweigh inflammatory processes in the form of iron accumulation in cortical MS pathology, and might also indicate iron loss. A significant association between susceptibility contrasts as well as R 2 * of the caudal middle frontal gyrus and disease duration was found (adjusted R2 : 0.602, p = 0.0011). Quantitative MRI parameters might be more sensitive towards regional cortical pathology compared with the use of conventional markers only and therefore may play a role in early detection of tissue damage in MS in the future.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Vaina de Mielina/patología , Encéfalo/patología
8.
AJNR Am J Neuroradiol ; 45(1): 76-81, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38164557

RESUMEN

BACKGROUND AND PURPOSE: An early and accurate diagnosis of multiple sclerosis remains challenging in clinical neurology. Established diagnostic methods have less than desirable sensitivity and specificity. An accurate, noninvasive diagnostic test for MS could have a major impact on diagnostic criteria. We compared the frequency of detection of the central vein sign (CVS) in white matter lesions of MS and controls on 7T T2*-weighted and SWI to 3T SWI. Additionally, we assessed the diagnostic performance of 7T T2*, 7T SWI, and 3T SWI for MS. MATERIALS AND METHODS: A retrospective case-control study was performed of patients with MS having both 7T MRI and 3T MRI. A control group of patients without MS was selected. Diagnosis of MS was established by board-certified neurologists with fellowship training in autoimmune neurology in line with the 2017 McDonald criteria. Percentage of lesions with a CVS was blindly measured for each technique. Diagnostic performance was computed by sensitivity, specificity, and positive and negative likelihood ratios (LRs). RESULTS: Sixty-one patients with MS (903 lesions) and 39 controls (1088 lesions) were included. 7T T2* showed significantly more CVS (87%) than both 7T SWI (73%) and 3T SWI (31%) (all P < .001). CVS was identified in the control group in ≤6% of lesions on all sequences. Using a threshold of >40% of lesions with CVS on 7T T2* and >15% on 7T SWI, both sequences had an accuracy = 100%, sensitivity = 100%, specificity = 100%, infinite positive LR, and zero negative LR. Using an optimal threshold of >12%, 3T SWI had an accuracy = 96.0%, sensitivity = 93.4%, specificity = 100%, infinite positive LR, and negative LR = 0.066. CONCLUSIONS: 7T MRI had 100% sensitivity and specificity for the diagnosis of MS and is superior to 3T. Future revisions to MS diagnostic criteria may consider recommendations for 7T MRI and inclusion of CVS as a biomarker.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Estudios de Casos y Controles , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Venas/patología , Encéfalo/patología
9.
Neuroimage ; 250: 118931, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085764

RESUMEN

Accurate segmentation of cerebral venous vasculature from gradient echo data is of central importance in several areas of neuroimaging such as for the susceptibility-based assessment of brain oxygenation or planning of electrode placement in deep brain stimulation. In this study, a vein segmentation algorithm for single- and multi-echo gradient echo data is proposed. First, susceptibility maps, true susceptibility-weighted images, and, in the multi-echo case, R2* maps were generated from the gradient echo data. These maps were filtered with an inverted Hamming filter to suppress background contrast as well as artifacts from field inhomogeneities at the brain boundaries. A shearlet-based scale-wise representation was generated to calculate a vesselness function and to generate segmentations based on local thresholding. The accuracy of the proposed algorithm was evaluated for different echo times and image resolutions using a manually generated reference segmentation and two vein segmentation algorithms (Frangi vesselness-based, recursive vesselness filter) as a reference with the Dice and Cohen's coefficients as well as the modified Hausdorff distance. The Frangi-based and recursive vesselness filter methods were significantly outperformed with regard to all error metrics. Applying the algorithm, susceptibility differences likely related to differences in blood oxygenation between superficial and deep venous territories could be demonstrated.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Venas Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anisotropía , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
J Magn Reson ; 330: 107033, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303117

RESUMEN

PURPOSE: In biological tissue, phase contrast is determined by multiple substances such as iron, myelin or calcifications. Often, these substances occur co-located within the same measurement volume. However, quantitative susceptibility mapping can solely measure the average susceptibility per voxel. To provide new insight in disease progression and mechanisms in neurological diseases, where multiple processes such as demyelination and iron accumulation occur simultaneously in the same location, a separation of susceptibility sources is desirable to disentangle the underlying susceptibility proportions. METHODS: The basic concept of separating the susceptibility effects from sources with different sign within one voxel is to include information on relaxation rate ΔR2∗ in the quantitative susceptibility mapping reconstruction pipeline. The presented reconstruction algorithm is implemented as a constrained minimization problem and solved using conjugate gradients. The algorithm is evaluated using a software phantom and validated in MRI measurements with a phantom containing mixtures of microscopic positive and negative susceptibility sources. Data from three multiple sclerosis patients are used to show in vivo feasibility. RESULTS: In numerical simulations, the feasibility of disentangling susceptibility sources within the same voxel was confirmed provided the critera of the static dephasing regime were fulfilled. In phantom experiments, the magnitude decay kernel, which is an essential reconstruction parameter of the algorithm, was determined to be Dm=194.5T-1s-1ppm-1, and susceptibility sources could be separated in MRI measurement data. CONCLUSIONS: In conclusion, in this study a detailed description of the implementation of an algorithm for the separation of positive and negative susceptibility sources within the same volume element as well as its limitations is presented and validated quantitatively in both simulation and phantom experiments for the first time. An application to multiple sclerosis lesions shows promising results for in vivo usability.


Asunto(s)
Esclerosis Múltiple , Algoritmos , Simulación por Computador , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Fantasmas de Imagen
11.
Front Neurosci ; 15: 661504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234639

RESUMEN

Objectives To characterize subcortical nuclei by multi-parametric quantitative magnetic resonance imaging. Materials and Methods: The following quantitative multiparametric MR data of five healthy volunteers were acquired on a 7T MRI system: 3D gradient echo (GRE) data for the calculation of quantitative susceptibility maps (QSM), GRE sequences with and without off-resonant magnetic transfer pulse for magnetization transfer ratio (MTR) calculation, a magnetization-prepared 2 rapid acquisition gradient echo sequence for T1 mapping, and (after a coil change) a density-adapted 3D radial pulse sequence for 23Na imaging. First, all data were co-registered to the GRE data, volumes of interest (VOIs) for 21 subcortical structures were drawn manually for each volunteer, and a combined voxel-wise analysis of the four MR contrasts (QSM, MTR, T1, 23Na) in each structure was conducted to assess the quantitative, MR value-based differentiability of structures. Second, a machine learning algorithm based on random forests was trained to automatically classify the groups of multi-parametric voxel values from each VOI according to their association to one of the 21 subcortical structures. Results The analysis of the integrated multimodal visualization of quantitative MR values in each structure yielded a successful classification among nuclei of the ascending reticular activation system (ARAS), the limbic system and the extrapyramidal system, while classification among (epi-)thalamic nuclei was less successful. The machine learning-based approach facilitated quantitative MR value-based structure classification especially in the group of extrapyramidal nuclei and reached an overall accuracy of 85% regarding all selected nuclei. Conclusion Multimodal quantitative MR enabled excellent differentiation of a wide spectrum of subcortical nuclei with reasonable accuracy and may thus enable sensitive detection of disease and nucleus-specific MR-based contrast alterations in the future.

12.
Phys Med ; 88: 278-284, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34332237

RESUMEN

PURPOSE: A phantom is presented in this study that allows for an experimental evaluation of QSM reconstruction algorithms. The phantom contains susceptibility producing particles with dia- and paramagnetic properties embedded in an MRI visible medium and is suitable to assess the performance of algorithms that attempt to separate isotropic dia- and paramagnetic susceptibility at the sub-voxel level. METHODS: The phantom was built from calcium carbonate (diamagnetic) and tungsten carbide particles (paramagnetic) embedded in gelatin and surrounded by agarose gel. Different mass fractions and mixing ratios of both susceptibility sources were used. Gradient echo data were acquired at 1.5 T, 3 T and 7 T. Susceptibility maps were calculated using the MEDI toolbox and relaxation rates ΔR2∗ were determined using exponential fitting. RESULTS: Relaxation rates as well as susceptibility values generally coincide with the theoretical values for particles fulfilling the assumptions of the the static dephasing regime with stronger deviations for relaxation rates at higher field strength and for high susceptibility values. MRI raw data are available for free academic use as supplementary material. CONCLUSIONS: In this study, a susceptibility phantom is presented that might find its application in the development and quantitative validation of current and future QSM reconstruction algorithms which aim to separate the influence of isotropic dia- and paramagnetic substructure in quantitative susceptibility mapping.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo , Gelatina , Fantasmas de Imagen
13.
Neuroimage ; 232: 117910, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647497

RESUMEN

OBJECT: This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS: Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS: Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION: Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Reproducibilidad de los Resultados
14.
Invest Radiol ; 55(11): 702-710, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32604388

RESUMEN

OBJECTIVES: The aim of this study was to explore blood deoxygenation across cerebral arteriovenous malformations (AVMs) for functional characterization of AVM vasculature. MATERIALS AND METHODS: Fifteen patients with cerebral arteriovenous vascular malformation were prospectively studied by digital subtraction angiography and using a 3 T magnetic resonance imaging system, with which three-dimensional (3D) gradient echo data for the calculation of quantitative susceptibility maps, velocity-encoded 3D gradient echo data for 3D flow assessment, and contrast-enhanced 3D time-of-flight data were acquired.The nidus, major supplying artery, and major draining veins were identified on digital subtraction angiography, and volumes of interest of the AVM nidus, AVM-related inflow and outflow vessels, and non-AVM-related normal veins were drawn on coregistered contrast-enhanced 3D time-of-flight data. The resulting volumes of interest were applied to quantitative susceptibility mapping and flow data. RESULTS: All patients showed a significant stepwise increase in susceptibility between feeding artery and nidus as well as between nidus and draining vein (Padjusted = 0.035, Padjusted= 0.007, respectively). Results revealed between 9.3% and 50.9% of the normal transcapillary blood deoxygenation-related susceptibility change between the feeding artery and the draining vein of the AVMs. When normalized by nidal blood flow velocity, this change was correlated with the presence of perinidal blood products. The mean susceptibility change across cerebral AVMs normalized with nidal volume inversely correlated with mean nidal flow velocity. CONCLUSIONS: Susceptibility changes indicating blood deoxygenation across cerebral AVMs were shown for the first time in this study and were associated with the presence of perinidal blood products. Deoxygenation measures may serve as functional characterization of AVM vasculature and may offer the potential for individual treatment assessment and possible risk stratification.


Asunto(s)
Malformaciones Arteriovenosas Intracraneales/diagnóstico por imagen , Adolescente , Adulto , Angiografía de Substracción Digital , Velocidad del Flujo Sanguíneo , Susceptibilidad a Enfermedades , Femenino , Humanos , Malformaciones Arteriovenosas Intracraneales/fisiopatología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
15.
J Neurosci Res ; 98(11): 2219-2231, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32731306

RESUMEN

Friedreich's ataxia (FRDA) is a rare genetic disorder leading to degenerative processes. So far, no effective treatment has been found. Therefore, it is important to assist the development of medication with imaging biomarkers reflecting disease status and progress. Ten FRDA patients (mean age 37 ± 14 years; four female) and 10 age- and sex-matched controls were included. Acquisition of magnetic resonance imaging (MRI) data for quantitative susceptibility mapping, R1 , R2 relaxometry and diffusion imaging was performed at 7 Tesla. Results of volume of interest (VOI)-based analyses of the quantitative data were compared with a voxel-based morphometry (VBM) evaluation. Differences between patients and controls were assessed using the analysis of covariance (ANCOVA; p < 0.01) with age and sex as covariates, effect size of group differences, and correlations with disease characteristics with Spearman correlation coefficient. For the VBM analysis, a statistical threshold of 0.001 for uncorrected and 0.05 for corrected p-values was used. Statistically significant differences between FRDA patients and controls were found in five out of twelve investigated structures, and statistically significant correlations with disease characteristics were revealed. Moreover, VBM revealed significant white matter atrophy within regions of the brainstem, and the cerebellum. These regions overlapped partially with brain regions for which significant differences between healthy controls and patients were found in the VOI-based quantitative MRI evaluation. It was shown that two independent analyses provided overlapping results. Moreover, positive results on correlations with disease characteristics were found, indicating that these quantitative MRI parameters could provide more detailed information and assist the search for effective treatments.


Asunto(s)
Ataxia de Friedreich/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adolescente , Adulto , Atrofia , Biomarcadores , Mapeo Encefálico , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Imagen de Difusión Tensora , Susceptibilidad a Enfermedades , Campos Electromagnéticos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto Joven
16.
Magn Reson Imaging ; 71: 170-177, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32534068

RESUMEN

PURPOSE: Tissue microstructure can influence quantitative magnetic resonance imaging such as relaxation rate measurements. Consequently, relaxation rate mapping can provide useful information on tissue microstructure. In this work, the theory on relaxation mechanisms of the change of the relaxation rate ∆R2⁎ in the presence of spherical susceptibility sources in a spin bearing medium is validated in simulations and phantom experiments for the coexistence of two species of susceptibility sources. METHODS: The influence of coexisting spherical perturbers with magnetic susceptibilitys of different signs was evaluated in Monte Carlo simulations including diffusion effects in the surrounding medium. Simulations were compared with relaxometry measurements at 1.5 Tesla and at 3 Tesla. The phantoms used to validate the simulations were built from agarose gel containing calcium carbonate and tungsten carbide particles of different size and concentration. RESULTS: The Monte Carlo simulations showed, that the change in relaxation rate only depends on the overall amount of susceptibility producing structures in the simulation volume and no difference was found, if mixtures of positive and negative particles were simulated. Phantom measurements within the static dephasing regime showed linear additivity of the effects from positive and negative susceptibility sources that were present within the same voxel. CONCLUSIONS: In summary, both the simulations and the phantom measurements showed that changes in the relaxation rate ΔR2⁎ add up linearly for spherical particles with different susceptibilities within the same voxel if the conditions for the static dephasing regime are fulfilled. If particles with different susceptibilities have both different sizes and violate the conditions of the static dephasing regime, effects on relaxation rates might no longer be linear.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Difusión , Método de Montecarlo , Fantasmas de Imagen
17.
Exp Neurol ; 329: 113314, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302677

RESUMEN

Despite internationally established diagnostic criteria, multiple system atrophy (MSA) is frequently misdiagnosed, particularly at disease onset. While neuropathological changes such as demyelination and iron deposition are typically detected in MSA, these structural hallmarks were so far only demonstrated post-mortem. Here, we examine whether myelin deficit observed in a transgenic murine model of MSA can be visualized and quantified in vivo using specific magnetic resonance imaging (MRI) approaches. Reduced myelin content was measured histologically in prototypical white matter as well as mixed grey-white matter regions i.e. corpus callosum, anterior commissure, and striatum of transgenic mice overexpressing human α-synuclein under the control of the myelin basic protein promotor (MBP29-hα-syn mice). Correspondingly, in vivo quantitative susceptibility mapping (QSM) showed a strongly reduced susceptibility contrast in white matter regions and T2-weighted MR imaging revealed a significantly reduced grey-white matter contrast in MBP29-hα-syn mice. In addition, morphological analysis suggested a pronounced, white matter-specific deposition of iron in MBP29-hα-syn mice. Importantly, in vivo MRI results were matched by comprehensive structural characterization of myelin, iron, and axonal directionality. Taken together, our results provide strong evidence that QSM is a very sensitive tool measuring changes in myelin density in conjunction with iron deposition in MBP29-hα-syn mice. This multimodal neuroimaging approach may pave the way towards a novel non-invasive technique to detect crucial neuropathological changes specifically associated with MSA.


Asunto(s)
Mapeo Encefálico/métodos , Hierro/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Transgénicos , Atrofia de Múltiples Sistemas/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo
18.
Clin Neuroradiol ; 30(3): 607-614, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31396654

RESUMEN

PURPOSE: To quantify the influence of melanin content on magnetic susceptibility of cerebral melanoma metastases. METHODS: Patients with non-hemorrhagic metastases were included based on the absence of susceptibility blooming artifacts. Susceptibility maps were calculated from 3D gradient echo data, using Laplacian-based phase unwrapping, sophisticated harmonic artefact reduction for phase data (V-SHARP) with varying spherical kernel sizes for background field removal and the iLSQR algorithm for the inversion of phase data. Susceptibility maps were referenced to cerebrospinal fluid. Non-hemorrhagic metastases were identified on contrast-enhanced T1-weighted images and susceptibility weighted images. Metastases masks were drawn on T1-weighted post-contrast images and used to compute mean susceptibility values of each metastasis. RESULTS: A total of 33 non-hemorrhagic melanoma brain metastases in 20 patients were quantitatively evaluated. Metastases without and with hyperintense signal on T1-weighted images, which corresponds to the melanin content, showed median susceptibility values of -0.028 ppm and -0.020 ppm, respectively. The susceptibility differences between metastases without and with T1-weighted hyperintense signal was not statistically significant (p ≥ 0.05). CONCLUSION: Non-hemorrhagic cerebral melanoma metastases showed weak diamagnetic susceptibility values and susceptibility did not significantly correlate to T1-weighted signals. Therefore, melanin does not seem to be a major contributor to susceptibility in cerebral melanoma metastases.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Imagen por Resonancia Magnética/métodos , Melaninas/metabolismo , Melanoma/diagnóstico por imagen , Melanoma/secundario , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Adulto , Anciano , Anciano de 80 o más Años , Artefactos , Neoplasias Encefálicas/metabolismo , Medios de Contraste , Femenino , Humanos , Imagenología Tridimensional , Masculino , Melanoma/metabolismo , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias Cutáneas/metabolismo
19.
Alzheimers Dement (Amst) ; 11: 538-549, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31388558

RESUMEN

INTRODUCTION: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION: The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration.

20.
NMR Biomed ; 32(9): e4118, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31286600

RESUMEN

Structural high-resolution imaging of the brainstem can be of high importance in clinical practice. However, ultra-high field magnetic resonance imaging (MRI) is still restricted in use due to limited availability. Therefore, quantitative MRI techniques (quantitative susceptibility mapping [QSM], relaxation measurements [ R2* , R1 ], diffusion tensor imaging [DTI]) and T2 - and proton density (PD)-weighted imaging in the human brainstem at 3 T and 7 T are compared. Five healthy volunteers (mean age: 21.5 ± 1.9 years) were measured at 3 T and 7 T using multi-echo gradient echo sequences for susceptibility mapping and R2* relaxometry, magnetization-prepared 2 rapid acquisition gradient echo sequences for R1 relaxometry, turbo-spin echo sequences for PD- and T2 -weighted imaging and readout-segmented echo planar sequences for DTI. Susceptibility maps were computed using Laplacian-based phase unwrapping, V-SHARP for background field removal and the streaking artifact reduction for QSM algorithm for dipole inversion. Contrast-to-noise ratios (CNRs) were determined at 3 T and 7 T in ten volumes of interest (VOIs). Data acquired at 7 T showed higher CNR. However, in four VOIs, lower CNR was observed for R2* at 7 T. QSM was shown to be the contrast with which the highest number of structures could be identified. The depiction of very fine tracts such as the medial longitudinal fasciculus throughout the brainstem was only possible in susceptibility maps acquired at 7 T. DTI effectively showed the main tracts (crus cerebri, transverse pontine fibers, corticospinal tract, middle and superior cerebellar peduncle, pontocerebellar tract, and pyramid) at both field strengths. Assessing the brainstem with quantitative MRI methods such as QSM, R2* , as well as PD- and T2 -weighted imaging with great detail, is also possible at 3 T, especially when using susceptibility mapping calculated from a gradient echo sequence with a wide range of echo times from 10.5 to 52.5 ms. However, tracing smallest structures strongly benefits from imaging at ultra-high field.


Asunto(s)
Mapeo Encefálico , Tronco Encefálico/diagnóstico por imagen , Imagen por Resonancia Magnética , Medios de Contraste/química , Femenino , Humanos , Masculino , Relación Señal-Ruido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...