Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005063

RESUMEN

The pivotal role of metal implants within the host's body following reconstructive surgery hinges primarily on the initial phase of the process: the adhesion of host cells to the implant's surface and the subsequent colonization by these cells. Notably, titanium alloys represent a significant class of materials used for crafting metal implants. This study, however, marks the first investigation into how the phase composition of titanium alloys, encompassing the volume fractions of the α, ß, and ω phases, influences cell adhesion to the implant's surface. Moreover, the research delves into the examination of induced hemolysis and cytotoxicity. To manipulate the phase composition of titanium alloys, various parameters were altered, including the chemical composition of titanium alloys with iron and niobium, annealing temperature, and high-pressure torsion parameters. By systematically adjusting these experimental parameters, we were able to discern the distinct impact of phase composition. As a result, the study unveiled that the colonization of the surfaces of the examined Ti-Nb and Ti-Fe alloys by human multipotent mesenchymal stromal cells exhibits an upward trend with the increasing proportion of the ω phase, concurrently accompanied by a decrease in the α and ß phases. These findings signify a new avenue for advancing Ti-based alloys for both permanent implants and temporary fixtures, capitalizing on the ability to regulate the volume fractions of the α, ß, and ω phases. Furthermore, the promising characteristics of the ω phase suggest the potential emergence of a third generation of biocompatible Ti alloys, the ω-based materials, following the first-generation α-Ti alloys and second-generation ß alloys.

2.
Materials (Basel) ; 16(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37629851

RESUMEN

WC-Co cemented carbides build one of the important classes of metal matrix composites. We show in this paper that the use of machine vision methods makes it possible to obtain sufficiently informative statistical data on the topology of the interfaces between tungsten carbide grains (WC) and a cobalt matrix (Co). For the first time, the outlines of the regions of the cobalt binder were chosen as a tool for describing the structure of cemented carbides. Numerical processing of micrographs of cross sections of three WC-Co alloys, which differ in the average grain size, was carried out. The distribution density of the angles in the contours of cobalt "lakes" is bimodal. The peaks close to 110° (so-called outcoming angles) correspond to the contacts between the cobalt binder and the WC/WC grain boundaries. The peaks close to 240° (or incoming angles) correspond to the WC "capes" contacting the cobalt "lakes" and are determined by the angles between facets of WC crystallites. The distribution density of the linear dimensions of the regions of the cobalt binder, approximated with ellipses, were also obtained. The distribution density exponentially decreases with the lengths of the semi-axes of the ellipsoid, approximating the area of the cobalt binder. The possible connection between the obtained data on the shape of cobalt areas and the crack trajectories in cemented carbides is discussed.

3.
Materials (Basel) ; 16(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241323

RESUMEN

Hardmetals (or cemented carbides) were invented a hundred years ago and became one of the most important materials in engineering. The unique conjunction of fracture toughness, abrasion resistance and hardness makes WC-Co cemented carbides irreplaceable for numerous applications. As a rule, the WC crystallites in the sintered WC-Co hardmetals are perfectly faceted and possess a truncated trigonal prism shape. However, the so-called faceting-roughening phase transition can force the flat (faceted) surfaces or interfaces to become curved. In this review, we analyze how different factors can influence the (faceted) shape of WC crystallites in the cemented carbides. Among these factors are the modification of fabrication parameters of usual WC-Co cemented carbides; alloying of conventional cobalt binder using various metals; alloying of cobalt binder using nitrides, borides, carbides, silicides, oxides; and substitution of cobalt with other binders, including high entropy alloys (HEAs). The faceting-roughening phase transition of WC/binder interfaces and its influence on the properties of cemented carbides is also discussed. In particular, the increase in the hardness and fracture toughness of cemented carbides correlates with transition of WC crystallites from a faceted to a rounded shape.

4.
Materials (Basel) ; 16(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36836984

RESUMEN

In this work the high-entropy alloy studied contained six components, Ti/Zr/Hf/Mo/Cr/Co, and three phases, namely one phase with body-centered cubic lattice (BCC) and two Laves phases C14 and C15. A series of annealings in the temperature range from 600 to 1000 °C demonstrated not only a change in the microstructure of the TiZrHfMoCrCo alloy, but also the modification of phase composition. After annealing at 1000 °C the BCC phase almost fully disappeared. The annealing at 600 and 800 °C leads to the formation of new Laves phases. After high-pressure torsion (HPT) of the as-cast TiZrHfMoCrCo alloy, the grains become very small, the BCC phase prevails, and C14 Laves phase completely disappears. This state is similar to the state after annealing at high effective temperature Teff. The additional annealing at 1000 °C after HPT returns the phase composition back to the state similar to that of the as-cast alloy after annealing at 1000 °C. At 1000 °C the BCC phase completely wets the C15/C15 grain boundaries (GBs). At 600 and 800 °C the GB wetting is incomplete. The big spread of nanohardness and Young's modulus for the BCC phase and (C15 + C14) Laves phases is observed.

5.
Materials (Basel) ; 15(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057318

RESUMEN

During severe plastic deformation (SPD), the processes of lattice defect formation as well as their relaxation (annihilation) compete with each other. As a result, a dynamic equilibrium is established, and a steady state is reached after a certain strain value. Simultaneously, other kinetic processes act in opposite directions and also compete with each other during SPD, such as grain refinement/growth, mechanical strengthening/softening, formation/decomposition of solid solution, etc. These competing processes also lead to dynamic equilibrium and result in a steady state (saturation), albeit after different strains. Among these steady-state phenomena, particle fragmentation during the second phase of SPD has received little attention. Available data indicate that precipitate fragmentation slows down with increasing strain, though saturation is achieved at higher strains than in the case of hardness or grain size. Moreover, one can consider the SPD-driven nanocrystallization in the amorphous phase as a process that is opposite to the fragmentation of precipitates. The size of these crystalline nanoprecipitates also saturates after a certain strain. The fragmentation of precipitates during SPD is the topic of this review.

6.
Materials (Basel) ; 14(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947101

RESUMEN

In this review, the phenomenon of grain boundary (GB) wetting by the second solid phase is analyzed for the high entropy alloys (HEAs). Similar to the GB wetting by the liquid phase, the GB wetting by the second solid phase can be incomplete (partial) or complete. In the former case, the second solid phase forms in the GB of a matrix, the chain of (usually lenticular) precipitates with a certain non-zero contact angle. In the latter case, it forms in the GB continuous layers between matrix grains which completely separate the matrix crystallites. The GB wetting by the second solid phase can be observed in HEAs produced by all solidification-based technologies. The particle chains or continuous layers of a second solid phase form in GBs also without the mediation of a liquid phase, for example by solid-phase sintering or coatings deposition. To describe the GB wetting by the second solid phase, the new GB tie-lines should be considered in the two- or multiphase areas in the multicomponent phase diagrams for HEAs. The GB wetting by the second solid phase can be used to improve the properties of HEAs by applying the so-called grain boundary engineering methods.

7.
Materials (Basel) ; 14(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924473

RESUMEN

The dissolution process of a lamellar structure with α and Γ phases formed during a discontinuous precipitation reaction is investigated here with a Fe-13.5 at. % Zn alloy by means of optical microscopy and scanning and transmission electron microscopy. The α phase is a solute-depleted solid solution and the Γ phase is the intermetallic compound Fe3Zn10. The examination reveals that the dissolution occurs in a discontinuous mode by a receding of the former reaction front of the discontinuous precipitation towards the position of the original grain boundary. A new solid solution in the post-dissolution area is especially inhomogeneous and reflects the former locations of the Γ lamellae ("ghost images") and the receding reaction front ("ghost lines"). A simulation procedure is applied to determine the Zn concentration profiles left in the post-dissolution region. Their shapes are mostly affected by the Zn content at the positions where the Γ lamellae have just been dissolved, which was also confirmed by the quantitative microchemical analysis.

8.
Materials (Basel) ; 12(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704123

RESUMEN

The microstructure and properties of titanium-based alloys can be tailored using severe plastic deformation. The structure and microhardness of Ti⁻4 wt.% Co alloy have been studied after preliminary annealing and following high pressure torsion (HPT). The Ti⁻4 wt.% Co alloy has been annealed at 400, 500, and 600 °C, i.e., below the temperature of eutectoid transformation in the Ti⁻4 wt.% Co system. The amount of Co dissolved in α-Ti increased with increasing annealing temperature. HPT led to the transformation of α-Ti in ω-Ti. After HPT, the amount of ω-phase in the sample annealed at 400 °C was about 80-85%, i.e., higher than in pure titanium (about 40%). However, with increasing temperature of pre-annealing, the portion of ω-phase decreased (60⁻65% at 500 °C and about 5% at 600 °C). The microhardness of all investigated samples increased with increasing temperature of pre-annealing.

10.
Sci Rep ; 5: 8871, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25747456

RESUMEN

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.

11.
Beilstein J Nanotechnol ; 4: 361-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844341

RESUMEN

The influence of the grain boundary (GB) specific area s GB on the appearance of ferromagnetism in Fe-doped ZnO has been analysed. A review of numerous research contributions from the literature on the origin of the ferromagnetic behaviour of Fe-doped ZnO is given. An empirical correlation has been found that the value of the specific grain boundary area s GB is the main factor controlling such behaviour. The Fe-doped ZnO becomes ferromagnetic only if it contains enough GBs, i.e., if s GB is higher than a certain threshold value s th = 5 × 10(4) m(2)/m(3). It corresponds to the effective grain size of about 40 µm assuming a full, dense material and equiaxial grains. Magnetic properties of ZnO dense nanograined thin films doped with iron (0 to 40 atom %) have been investigated. The films were deposited by using the wet chemistry "liquid ceramics" method. The samples demonstrate ferromagnetic behaviour with J s up to 0.10 emu/g (0.025 µB/f.u.ZnO) and coercivity H c ≈ 0.03 T. Saturation magnetisation depends nonmonotonically on the Fe concentration. The dependence on Fe content can be explained by the changes in the structure and contiguity of a ferromagnetic "grain boundary foam" responsible for the magnetic properties of pure and doped ZnO.

12.
Phys Rev Lett ; 92(19): 196101, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15169421

RESUMEN

The as-grown shape of the cylindric tilt grain boundary (GB) in Mo bicrystals grown by the floating zone method has been studied with the electron backscattering diffraction method. The seed crystals were misoriented such that the coincidence site lattice (CSL) with lowest possible inverse density of coincidence sites, a Sigma=3 was grown. The flat (100)(Sigma3CSL) facets were observed forming smooth edges (no slope discontinuity) with rounded rough GB portions. Rough GBs curve away from the plane of the (100)(Sigma3CSL) facet as x(beta) with beta=1.69+/-0.07 on one side and beta=1.72+/-0.07 on the other side. Therefore, GB roughening belongs to the Pokrovsky-Talapov universality class. Slope discontinuities between two rounded rough GB portions were also observed. This is the first experimental observation of such first-order rough-to-rough ridges predicted by the Davidson-den-Nijs model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...