Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116355, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669871

RESUMEN

The neonicotinoid insecticide thiamethoxam (TMX) is widely used to protect crops against insect pests. Despite some desirable properties such as its low toxicity to birds and mammals, concerns have been raised about its toxicity to non-target arthropods, including freshwater insects like chironomids. Whereas multiple studies have investigated chronic effects of neonicotinoids in chironomid larvae at standardized laboratory conditions, a better understanding of their chronic toxicity under variable temperatures and exposure is needed for coherent extrapolation from the laboratory to the field. Here, we developed a quantitative mechanistic effect model for Chironomus riparius, to simulate the species' life history under dynamic temperatures and exposure concentrations of TMX. Laboratory experiments at four different temperatures (12, 15, 20, 23 °C) and TMX concentrations between 4 and 51 µg/L were used to calibrate the model. Observed concentration-dependent effects of TMX in C. riparius included slower growth, later emergence, and higher mortality rates with increasing concentrations. Furthermore, besides a typical accelerating effect on the organisms' growth and development, higher temperatures further increased the effects associated with TMX. With some data-informed modeling decisions, most prominently the inclusion of a size dependence that makes larger animals more sensitive to TMX, the model was parametrized to convincingly reproduce the data. Experiments at both a constant (20 °C) and a dynamically increasing temperature (15-23 °C) with pulsed exposure were used to validate the model. Finally, the model was used to simulate realistic exposure conditions using two reference exposure scenarios measured in Missouri and Nebraska, utilizing a moving time window (MTW) and either a constant temperature (20 °C) or the measured temperature profiles belonging to each respective scenario. Minimum exposure multiplication factors leading to a 10% effect (EP10) in the survival at pupation, i.e., the most sensitive endpoint found in this study, were 25.67 and 21.87 for the Missouri scenario and 38.58 and 44.64 for the Nebraska scenario, when using the respective temperature assumptions. While the results illustrate that the use of real temperature scenarios does not systematically modify the EPx in the same direction (making it either more or less conservative when used as a risk indicator), the advantage of this approach is that it increases the realism and thus reduces the uncertainty associated with the model predictions.


Asunto(s)
Chironomidae , Insecticidas , Larva , Temperatura , Tiametoxam , Animales , Tiametoxam/toxicidad , Chironomidae/efectos de los fármacos , Insecticidas/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Neonicotinoides/toxicidad
2.
Biology (Basel) ; 12(6)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37372099

RESUMEN

When species spread into new regions, competition with native species and predatory-prey relationships play a major role in whether the new species can successfully establish itself in the recipient food web and become invasive. In aquatic habitats, species with a metagenetic life cycle, such as the freshwater jellyfish Craspedacusta with benthic polyps and planktonic medusae, have to meet the requirements of two distinct life stages occurring in two habitats with different food webs. Here, we examined the trophic position of both life stages, known to be predatory, and compared their niches with those of putative native competitors using stable isotope analysis. We found that δ13C and δ15N signatures of medusae overlapped with those of co-occurring Chaoborus larvae and juvenile fish (Rutilus rutilus) in a well-studied lake, implying high competition with these native predators. The comparison of δ15N signatures of Hydra and Craspedacusta polyps in four additional lakes revealed their similar trophic position, matching their predatory lifestyle. However, their δ13C signatures differed not only across all four of the lakes studied but also within one lake over time, suggesting a preference for pelagic or benthic food sources. We conclude that invasive and native polyps differ in their niches due to different food spectra, which favors the invasion success of Craspedacusta.

3.
Arch Environ Contam Toxicol ; 83(4): 349-360, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36264308

RESUMEN

In chemical risk assessment, extrapolations from laboratory tests to more realistic conditions are essential to address the toxic effects of pesticides on individuals and populations under field conditions. To transfer toxicological laboratory tests to differing temperature conditions, or outdoor field scenarios, the consideration of temperature dependence is essential and increases realism. Special consideration is given to the impact of temperature on direct sensitivity of organisms to pesticides, for which there are only few modelling approaches available so far. We present a concept for applying physiological temperature dependencies to toxicokinetic-toxicodynamic (TKTD) parameters in the General Uniformed Threshold model of Survival (GUTS). To test this approach in an exemplary study, temperature dependencies from studies on the developmental rate of the mayfly Cloeon dipterum were applied to the parameters of a previously parameterised TKTD model of this species after exposure to imidacloprid. Using a physiologically derived temperature correction for the TKTD rate constants, model predictions for independently conducted toxicology experiments with temperature ranges between 7.8 and 26.4 °C were performed for validation. Our approach demonstrates the successful transfer of a physiological observed temperature dependency on toxicity parameters and survival patterns for Cloeon dipterum and imidacloprid as a case study.


Asunto(s)
Ephemeroptera , Plaguicidas , Humanos , Animales , Temperatura , Neonicotinoides/toxicidad , Plaguicidas/toxicidad , Medición de Riesgo
4.
Environ Pollut ; 245: 408-418, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30453139

RESUMEN

Cyanobacterial blooms are of global concern due to the multiple harmful risks they pose towards aquatic ecosystem and human health. However, information on the fate of organic pollutants mediated by cyanobacterial blooms in eutrophic water remains elusive. In the present study, endocrine disruptive potentials of phytoplankton samples were evaluated throughout a year-long surveillance in a large and eutrophic freshwater lake. Severe cyanobacterial blooms persisted during our sampling campaigns. Estrogenic agonistic, anti-estrogenic, anti-androgenic, and anti-glucocorticogenic effects were observed in the phytoplankton samples using in vitro reporter gene bioassays. 27 endocrine disrupting chemicals (EDCs) of different modes of action were detected in the samples via UPLC-MS/MS system. Results from mass balance analysis indicated that the measured estrogenic activities were greater than the predicted estrogenic potencies from chemical analysis, demonstrating that chemical analysis of targeted EDCs is unable to fully explain the compounds responsible for the observed estrogenicities. Results from Spearman's correlation analysis concluded that the concentrations of ten EDCs in phytoplankton samples were negatively correlated with cyanobacterial biomass, suggesting the potential occurrence of biomass bio-dilution effects of EDCs due to the huge biomass of cyanobacteria during bloom seasons. The present study provided complementary information about the potential endocrine disruptive risks of cyanobacterial blooms, which is important for understanding and regulating EDCs in eutrophic lakes.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Disruptores Endocrinos/análisis , Eutrofización/fisiología , Lagos/química , Fitoplancton/crecimiento & desarrollo , Biomasa , China , Cianobacterias/metabolismo , Ecosistema , Humanos , Fitoplancton/metabolismo , Estaciones del Año , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
5.
Rev Environ Contam Toxicol ; 236: 259-94, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26423077

RESUMEN

Chemical contaminants released into the in the environment may have adverse effects on (non-target) species, populations and communities. The return of a stressed system to its pre-disturbance or other reference state, i.e. the ecological recovery, may depend on various factors related to the affected taxon, the ecosystem of concern and the type of stressor with consequences for the assessment and management of risks associated with chemical contaminants. Whereas the effects caused by short-term exposure might be acceptable to some extent, the conditions under which ecological recovery can serve as a decision criterion in the environmental risk assessment of chemical stressors remains to be evaluated. For a generic consideration of recovery in the risk assessment of chemicals, we reviewed case studies of natural and artificial aquatic systems and evaluate five aspects that might cause variability in population recovery time: (1) taxonomic differences and life-history variability, (2) factors related to ecosystem type and community processes, (3) type of disturbance, (4) comparison of field and semi-field studies, and (5) effect magnitude, i.e., the decline in population size following disturbance. We discuss our findings with regard to both retrospective assessments and prospective risk assessment.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Exposición a Riesgos Ambientales , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente , Agua Dulce , Medición de Riesgo
6.
Integr Environ Assess Manag ; 12(1): 67-81, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26119989

RESUMEN

Standard risk assessment of plant protection products (PPP) combines "worst-case" exposure scenarios with effect thresholds using assessment (safety) factors to account for uncertainties. If needed, risks can be addressed applying more realistic conditions at higher tiers, which refine exposure and/or effect assessments using additional data. However, it is not possible to investigate the wide range of potential scenarios experimentally. In contrast, ecotoxicological mechanistic effect models do allow for addressing a multitude of scenarios. Furthermore, they may aid the interpretation of experiments such as mesocosm studies, allowing extrapolation to conditions not covered in experiments. Here, we explore how to use mechanistic effect models in the aquatic risk assessment of a model insecticide (Modelmethrin), applied several times per season but rapidly dissipating between applications. The case study focuses on potential effects on aquatic arthropods, the most sensitive group for this substance. The models provide information on the impact of a number of short exposure pulses on sensitive and/or vulnerable populations and, when impacted, assess recovery. The species to model were selected based on their sensitivity in laboratory and field (mesocosm) studies. The general unified threshold model for survival (GUTS) model, which describes the toxicokinetics and toxicodynamics of chemicals in individuals, was linked to 3 individual-based models (IBM), translating individual survival of sensitive organisms into population-level effects. The impact of pulsed insecticide exposures on populations were modeled using the spatially explicit IBM metapopulation model for assessing spatial and temporal effects of pesticides (MASTEP) for Gammarus pulex, the Chaoborus IBM for populations of Chaoborus crystallinus, and the "IdamP" model for populations of Daphnia magna. The different models were able to predict the potential effects of Modelmethrin applications to key arthropod species inhabiting different aquatic ecosystems; the most sensitive species were significantly impacted unless respective mitigation measures were implemented (buffer zones resulting in reduced exposure). As expected the impact was stronger in shallow ditches as compared to deeper pond scenarios. Furthermore, as expected, recovery depended on factors such as temperature (affecting population growth rate and number of generations) and the occurence of nonimpacted aquatic ecosystems (their frequency and connectivity). These model predictions were largely in line with field observations and/or the results of a mesocosm study, providing additional evidence on the suitability and reliability of the models for risk assessment purposes. Because of their flexibility, models may predict the likelihood of unacceptable effects-based on previously defined protection goals-for a range of insecticide exposure scenarios and freshwater habitats.


Asunto(s)
Ecosistema , Exposición a Riesgos Ambientales , Invertebrados/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/análisis , Animales , Ecotoxicología , Insecticidas/metabolismo , Insecticidas/toxicidad , Modelos Biológicos , Plaguicidas/análisis , Plaguicidas/metabolismo , Medición de Riesgo/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
7.
Ecotoxicology ; 15(7): 583-91, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16960660

RESUMEN

Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.


Asunto(s)
Ecosistema , Triazinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bioensayo , Contaminantes Químicos del Agua/análisis , Zooplancton/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA