Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 27: 380-390, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36419471

RESUMEN

The transmembrane adaptor phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG) is phosphorylated in T cells downstream of PD-1 signaling and contributes to the resulting functional inhibition of multiple cellular processes. Furthermore, PAG expression is negatively correlated with survival in multiple human tumors and is a driver of murine tumor growth and immune evasion. Here we develop an antibody that targets the extracellular domain of human PAG, with cross-reactivity to murine PAG. We demonstrate that this antibody binds to extracellular PAG on intact cells and affects T cell activation. Finally, we show that administration of anti-PAG monoclonal antibody in combination with anti-PD-1 antibody to mice bearing MC38 tumors limited tumor growth and enhanced T cell infiltration to tumors.

2.
Front Immunol ; 13: 927265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911672

RESUMEN

Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Glucógeno Sintasa Quinasa 3 , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Transducción de Señal
3.
Immunology ; 164(3): 555-568, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34164813

RESUMEN

Ligation of the inhibitory receptor PD-1 on T cells results in the inhibition of numerous cellular functions. Despite the overtly inhibitory outcome of PD-1 signalling, there are additionally a collection of functions that are activated. We have observed that CD4+ T cells stimulated through the T-cell receptor and PD-1 primarily do not proliferate; however, there is a population of cells that proliferates more than T-cell receptor stimulation alone. These highly proliferating cells could potentially be associated with PD-1-blockade unresponsiveness in patients. In this study, we have performed RNA sequencing and found that following PD-1 ligation proliferating and non-proliferating T cells have distinct transcriptional signatures. Remarkably, the proliferating cells showed an enrichment of genes associated with an activated state despite PD-1 signalling. Additionally, circulating follicular helper T cells were significantly more prevalent in the non-proliferating population, demonstrated by enrichment of the associated genes CXCR5, CCR7, TCF7, BCL6 and PRDM1 and validated at the protein level. Translationally, we also show that there are more follicular helper T cells in patients that respond favourably to PD-1 blockade. Overall, the presence of transcriptionally and functionally distinct T cell populations responsive to PD-1 ligation may provide insights into the clinical differences observed following therapeutic PD-1 blockade.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Transcriptoma/inmunología , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular/genética , Células Cultivadas , Conjuntos de Datos como Asunto , Humanos , Inmunofenotipificación , Activación de Linfocitos/genética , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual , Subgrupos de Linfocitos T/metabolismo
4.
Commun Biol ; 4(1): 672, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083754

RESUMEN

The inhibitory receptor PD-1 is expressed on T cells to inhibit select functions when ligated. The complete signaling mechanism downstream of PD-1 has yet to be uncovered. Here, we discovered phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG) is phosphorylated following PD-1 ligation and associate this with inhibitory T cell function. Clinical cohort analysis correlates low PAG expression with increased survival from numerous tumor types. PAG knockdown in T cells prevents PD-1-mediated inhibition of cytokine secretion, cell adhesion, CD69 expression, and ERK204/187 phosphorylation, and enhances phosphorylation of SRC527 following PD-1 ligation. PAG overexpression rescues these effects. In vivo, PAG contributes greatly to the growth of two murine tumors, MC38 and B16, and limits T cell presence within the tumor. Moreover, PAG deletion sensitizes tumors to PD-1 blockade. Here PAG is established as a critical mediator of PD-1 signaling and as a potential target to enhance T cell activation in tumors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Activación de Linfocitos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fosforilación , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología
5.
Inflammation ; 44(4): 1529-1539, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33624224

RESUMEN

PD-1 is a critical therapeutic target in cancer immunotherapy and antibodies blocking PD-1 are approved for multiple types of malignancies. The phosphatase SHP2 is the main effector mediating PD-1 downstream signaling and accordingly attempts have been made to target this enzyme as an alternative approach to treat immunogenic tumors. Unfortunately, small molecule inhibitors of SHP2 do not work as expected, suggesting that the role of SHP2 in T cells is more complex than initially hypothesized. To better understand the perplexing role of SHP2 in T cells, we performed interactome mapping of SAP, an adapter protein that is associated with SHP2 downstream signaling. Using genetic and pharmacological approaches, we discovered that SHP2 dephosphorylates ITK specifically downstream of PD-1 and that this event was associated with PD-1 inhibitory cellular functions. This study suggests that ITK is a unique target in this pathway, and since ITK is a SHP2-dependent specific mediator of PD-1 signaling, the combination of ITK inhibitors with PD-1 blockade may improve upon PD-1 monotherapy in the treatment of cancer.


Asunto(s)
Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Humanos , Células Jurkat , Ratones , Piperidinas/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Linfocitos T/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Carga Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Front Cell Dev Biol ; 9: 790386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047501

RESUMEN

The emergence of anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA-4), anti-programmed cell death 1 ligand (anti-PD-1), and anti-PD-L1 antibodies as immune checkpoint inhibitors (ICIs) revolutionized the treatment of numerous types of tumors. These antibodies, both alone and in combination, provide great clinical efficacy as evidenced by tumor regression and increased overall patients' survival. However, with this success comes multiple challenges. First, while patients who respond to ICIs have outstanding outcomes, there remains a large proportion of patients who do not respond at all. This all-or-none response has led to looking downstream of programmed cell death 1 (PD-1) for additional therapeutic targets and for new combination therapies. Second, a majority of patients who receive ICIs go on to develop immune-related adverse events (irAEs) characterized by end-organ inflammation with T-cell infiltrates. The hallmarks of these clinically observed irAEs share many similarities with primary autoimmune diseases. The contribution of PD-1 to peripheral tolerance is a major mechanism for protection against expansion of self-reactive T-cell clones and autoimmune disease. In this review, we aim to bridge the gaps between our cellular and molecular knowledge of PD-1 signaling in T cells, ICI-induced irAEs, and autoimmune diseases. We will highlight shared mechanisms and the potential for new therapeutic strategies.

7.
J Biol Chem ; 295(52): 18036-18050, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33077516

RESUMEN

Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell-mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell-mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1-triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1-targeting therapeutic approaches.


Asunto(s)
Adhesión Celular , Inmunidad Celular/inmunología , Fosfoproteínas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteoma/análisis , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Citocinas/metabolismo , Humanos , Ligandos , Activación de Linfocitos , Fosforilación , Transducción de Señal , Linfocitos T/metabolismo , Activación Transcripcional
8.
Inflammation ; 43(4): 1201-1208, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32314127

RESUMEN

Immunotherapeutic treatment strategies greatly extend patient survival following malignant disease across a wide range of tumor types, including even those with metastatic disease. While diverse in approach, adoptive cell therapy, introduction of T cells that express chimeric antigen receptors, and checkpoint inhibitors all aim to re-invigorate the immune system to promote tumor cell identification and elimination. This review will focus on immune cell infiltration into tumors as well as a cellular organization within the tumor microenvironment as directed by the cell-specific expression patterns of chemokines and chemokine receptors. Through better understanding the chemokine network within tumors, we can uncover mechanisms to promote beneficial immune cell infiltration that can be combined with checkpoint inhibition. Conversely, chemokine expression is not limited to cells of the immune system, and it is understood that tumor cells also express chemokines and chemokine receptors. Tumor cells can hijack the chemokine networks to promote immune suppression and metastatic tumor cell trafficking. We will discuss the ways in which the chemokine network lies at the crossroad of immune evasion and tumor regression. Overall, this review will summarize key publications in the field of immune cell recruitment to tumors, highlight the dichotomous nature of chemokine interventions into cancer, and aims to identify therapeutic pathways forward.


Asunto(s)
Quimiocinas/inmunología , Inhibidores de Puntos de Control Inmunológico/metabolismo , Inmunidad/fisiología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Quimiocinas/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad/efectos de los fármacos , Inmunoterapia/tendencias , Neoplasias/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-34458892

RESUMEN

Immune cell infiltration into tumors, intratumoral cellular organization, and the cell-specific expression patterns of chemokines and chemokine receptors greatly influence the efficacy of immunotherapeutic treatment strategies. In our recent review article, we shined a light on the deciding role of the chemokine network between immune mediated tumor regression or immune evasion of the tumor. Current T cell centric immunotherapeutic strategies primarily rely on increasing cellular activation and decreasing cellular inhibition, with the overall goal of enhancing effector cell function. These strategies neglect to account for the presence of the T cells within the tumor, hardly boosting immune cell infiltration. Chemokines and chemokine receptors are the regulators of recruitment, migration, and intratumoral compartmentalization. Yet, utilizing the chemokine network to recruit immune cells that will drive tumor regression is not a straightforward path, as tumor cells often hijack these pathways in the effort of immune evasion. Many novel therapeutic strategies involving chemokine targeting are under trial for many diverse tumor types. As a field, we can learn from both the successes and failures of these trials in order to push forward the next generation of immunotherapeutic strategies that include augmented T cell trafficking.

10.
PLoS One ; 14(6): e0218109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31199820

RESUMEN

The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors that are expressed exclusively on hematopoietic cells. Most of these transmembrane receptors are homotypic by nature and downstream signaling occurs when cells that express the same SLAM receptor interact. Previous studies have determined that anti-SLAMF6 antibodies can have a therapeutic effect in autoimmunity and cancer. However, little is known about the role of SLAMF6 in the adaptive immune responses and in order to utilize SLAMF6 interventional approaches, a better understanding of the biology of this receptor in T cell is warranted. Accordingly, the objective of our study was to investigate both functionally and structurally the role of SLAMF6 in T cell receptor (TCR) mediated responses. Biochemical and genetic experiments revealed that SLAMF6 was required for productive TCR downstream signaling. Interestingly, SLAMF6 ectodomain was required for its function, but not for its recruitment to the immunological synapse. Flow-cytometry analysis demonstrated that tyrosine 308 of the tail of SLAMF6 was crucial for its ability to enhance T cell function. Imaging studies revealed that SLAMF6 clustering, specifically with the TCR, resulted in dramatic increase in downstream signaling. Mechanistically, we showed that SLAMF6 enhanced T cell function by increasing T cell adhesiveness through activation of the small GTPase Rap1. Taken together SLAMF6 is an important regulator of T cell activation where both its ectodomain and its endodomain contribute differentially to T cell functions. Additional studies are underway to better evaluate the role of anti-SLAMF6 approaches in specific human diseases.


Asunto(s)
Activación de Linfocitos , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Linfocitos T/inmunología , Adhesión Celular/genética , Adhesión Celular/inmunología , Citometría de Flujo , Humanos , Células Jurkat , Dominios Proteicos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Complejo Shelterina , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Linfocitos T/citología , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/inmunología
11.
J Vis Exp ; (139)2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30320758

RESUMEN

Receptor-associated enzymes are the major mediators of cellular activation. These enzymes are regulated, at least in part, by physical interactions with cytoplasmic tails of the receptors. The interactions often occur through specific protein domains and result in activation of the enzymes. There are several methods to study interactions between proteins. While co-immunoprecipitation is commonly used to study domains that are required for protein-protein interactions, there are no assays that document the contribution of specific domains to activity of the recruited enzymes at the same time. Accordingly, the method described here combines co-immunoprecipitation and an on-bead enzymatic activity assay for simultaneous evaluation of interactions between proteins and associated enzymatic activation. The goal of this protocol is to identify the domains that are critical for physical interactions between a protein and enzyme and the domains that are obligatory for complete activation of the enzyme. The importance of this assay is demonstrated, as certain receptor protein domains contribute to the binding of the enzyme to the cytoplasmic tail of the receptor, while other domains are necessary to regulate the function of the same enzyme.


Asunto(s)
Inmunoprecipitación/métodos , Proteínas de la Membrana/metabolismo , Bioensayo , Activación Enzimática , Humanos , Proteínas de la Membrana/química , Unión Proteica , Dominios Proteicos
12.
J Immunol ; 201(9): 2824-2831, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275048

RESUMEN

Programmed cell death 1 (PD-1) is a major coinhibitory receptor and a member of the immunological synapse (IS). To uncover proteins that regulate PD-1 recruitment to the IS, we searched for cytoskeleton-related proteins that also interact with PD-1 using affinity purification mass spectrometry. Among these proteins, EF hand domain family member D2 (EFHD2), a calcium binding adaptor protein, was functionally and mechanistically analyzed for its contribution to PD-1 signaling. EFHD2 was required for PD-1 to inhibit cytokine secretion, proliferation, and adhesion of human T cells. Interestingly, EFHD2 was also required for human T cell-mediated cytotoxicity and for mounting an antitumor immune response in a syngeneic murine tumor model. Mechanistically, EFHD2 contributed to IS stability, lytic vesicles trafficking, and granzyme B secretion. Altogether, EFHD2 is an important regulator of T cell cytotoxicity and further studies should evaluate its role in T cell-mediated inflammation.


Asunto(s)
Proteínas de Unión al Calcio/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Humanos , Sinapsis Inmunológicas/inmunología , Ratones
13.
Proc Natl Acad Sci U S A ; 115(3): E468-E477, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282323

RESUMEN

Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Espectrometría de Masas/métodos , Receptor de Muerte Celular Programada 1/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/metabolismo , Animales , Biomarcadores de Tumor , Proliferación Celular/fisiología , Citocinas/genética , Citocinas/metabolismo , Regulación Enzimológica de la Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , Células Jurkat , Masculino , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética
14.
Discov Med ; 24(130): 31-39, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28950073

RESUMEN

Subsets of T cells can be classified by the functions executed or by the anatomic location at which they operate. In vitro analysis of T cell subsets and even commercial kits for subset separation often incorporate chemokine receptors into the panel of markers to distinguish among them, but what is the functional significance of these receptors? In this review, we discuss chemokine receptors that are expressed exclusively on different T cell subsets as well as those that are commonly expressed across subsets with the goal of linking receptor expression to cellular localization and intended cellular function. By understanding the chemokine network, we can better predict T cell migration and the immune reactivity of a given tissue environment. This is of particular importance for the chemokine expression patterns of solid tumor microenvironments as it relates to T cell infiltration. A successful immunotherapeutic strategy needs to incorporate not only the activation state of cytotoxic T cells but also the likelihood that these cells come into contact with tumor cells. We highlight what is currently known about chemokine expression by tumors of various origins and how this relates to immune suppression or activation. Chemokine signaling represents a promising area of potential anti-tumor intervention and the current state of agonists or antagonists is discussed. Overall, this review relates chemokine signaling to T cell function and emphasizes the importance of chemokines and chemokine receptors in tumor infiltration by T cells.


Asunto(s)
Quimiocinas/metabolismo , Receptores de Quimiocina/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Movimiento Celular/fisiología , Humanos
15.
Sci Signal ; 10(491)2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790195

RESUMEN

The adaptor protein CrkII regulates T cell adhesion by recruiting the guanine nucleotide exchange factor C3G, an activator of Rap1. Subsequently, Rap1 stimulates the integrin LFA-1, which leads to T cell adhesion and interaction with antigen-presenting cells (APCs). The adhesion of T cells to APCs is critical for their proper function and education. The interface between the T cell and the APC is known as the immunological synapse. It is characterized by the specific organization of proteins that can be divided into central supramolecular activation clusters (c-SMACs) and peripheral SMACs (p-SMACs). Through total internal reflection fluorescence (TIRF) microscopy and experiments with supported lipid bilayers, we determined that activated Rap1 was recruited to the immunological synapse and localized to the p-SMAC. C3G and the active (dephosphorylated) form of CrkII also localized to the same compartment. In contrast, inactive (phosphorylated) CrkII was confined to the c-SMAC. Activation of CrkII and its subsequent movement from the c-SMAC to the p-SMAC depended on the phosphatase SHP-1, which acted downstream of the T cell receptor. In the p-SMAC, CrkII recruited C3G, which led to Rap1 activation and LFA-1-mediated adhesion of T cells to APCs. Functionally, SHP-1 was necessary for both the adhesion and migration of T cells. Together, these data highlight a signaling pathway in which SHP-1 acts through CrkII to reshape the pattern of Rap1 activation in the immunological synapse.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Sinapsis Inmunológicas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Adhesión Celular , Proteínas Activadoras de GTPasa/genética , Factor 2 Liberador de Guanina Nucleótido/genética , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Sinapsis Inmunológicas/metabolismo , Células Jurkat , Activación de Linfocitos/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Ratones , Ratones Transgénicos , Fosforilación , Cultivo Primario de Células , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteínas Proto-Oncogénicas c-crk/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de la Célula Individual , Linfocitos T/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(10): 2693-2698, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213494

RESUMEN

Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)-expressing cells. Structure-function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs.


Asunto(s)
Quimiocina CXCL12/genética , Inflamación/genética , Fosfoinositido Fosfolipasa C/genética , Proteínas de Unión a Telómeros/genética , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Quimiocina CXCL12/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Molécula 1 de Adhesión Intercelular/inmunología , Linfocitos/inmunología , Linfocitos/patología , Ratones , Fosfoinositido Fosfolipasa C/inmunología , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Complejo Shelterina , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas de Unión a Telómeros/inmunología , ras-GRF1/inmunología
17.
J Vis Exp ; (112)2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27404581

RESUMEN

Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair.


Asunto(s)
Linfocitos T , Adhesión Celular , Moléculas de Adhesión Celular , Humanos , Integrinas , Estrés Mecánico
18.
Int J Mol Sci ; 17(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294916

RESUMEN

The blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3⁺ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB.


Asunto(s)
Analgésicos Opioides/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Morfina/farmacología , Analgésicos Opioides/efectos adversos , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/genética , Línea Celular , Movimiento Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Humanos , Morfina/efectos adversos
19.
J Neurosci Methods ; 269: 39-45, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27216631

RESUMEN

BACKGROUND: Numerous systems exist to model the blood-brain barrier (BBB) with the goal of understanding the regulation of passage into the central nervous system (CNS) and the potential impact of selected insults on BBB function. These models typically focus on the intrinsic cellular properties of the BBB, yet studies of peripheral cell migration are often excluded due to technical restraints. NEW METHOD: This method allows for the study of in vitro cellular transmigration following exposure to any treatment of interest through optimization of co-culture conditions for the human brain microvascular endothelial cells (BMEC) cell line, hCMEC/D3, and primary human peripheral blood mononuclear cells (PBMCs). RESULTS: hCMEC/D3 cells form functionally confluent monolayers on collagen coated polytetrafluoroethylene (PTFE) transwell inserts, as assessed by microscopy and tracer molecule (FITC-dextran (FITC-D)) exclusion. Two components of complete hCMEC/D3 media, EBM-2 base-media and hydrocortisone (HC), were determined to be cytotoxic to PBMCs. By combining the remaining components of complete hCMEC/D3 media with complete PBMC media a resulting co-culture media was established for use in hCMEC/D3-PBMC co-culture functional assays. COMPARISON WITH EXISTING METHODS: Through this method, issues of extensive differences in culture media conditions are resolved allowing for treatments and functional assays to be conducted on the two cell populations co-cultured simultaneously. CONCLUSION: Described here is an in vitro co-culture model of the BBB, consisting of the hCMEC/D3 cell line and primary human PBMCs. The co-culture media will now allow for the study of exposure to potential insults to BBB function over prolonged time courses.


Asunto(s)
Barrera Hematoencefálica , Técnicas de Cocultivo , Células Endoteliales , Leucocitos Mononucleares , Microvasos , Barrera Hematoencefálica/fisiología , Adhesión Celular , Línea Celular , Movimiento Celular , Supervivencia Celular , Colágeno , Dextranos , Células Endoteliales/fisiología , Fluoresceína-5-Isotiocianato/análogos & derivados , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/toxicidad , Leucocitos Mononucleares/fisiología , Microvasos/fisiología , Politetrafluoroetileno , Andamios del Tejido
20.
Blood ; 126(25): 2695-703, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26324702

RESUMEN

Regulation of integrins is critical for lymphocyte adhesion to endothelium and trafficking through secondary lymphoid organs. Inside-out signaling to integrins is mediated by the small GTPase Rap1. Two effectors of Rap1 regulate integrins, RapL and Rap1 interacting adaptor molecule (RIAM). Using mice conditionally deficient in both Rap1a and Rap1b and mice null for RIAM, we show that the Rap1/RIAM module is not required for T- or B-cell development but is essential for efficient adhesion to intercellular adhesion molecule (ICAM) 1 and vascular cell adhesion molecule (VCAM) 1 and for proper trafficking of lymphocytes to secondary lymphoid organs. Interestingly, in RIAM-deficient mice, whereas peripheral lymph nodes (pLNs) were depleted of both B and T cells and recirculating B cells were diminished in the bone barrow (BM), the spleen was hypercellular, albeit with a relative deficiency of marginal zone B cells. The abnormality in lymphocyte trafficking was accompanied by defective humoral immunity to T-cell-dependent antigens. Platelet function was intact in RIAM-deficient animals. These in vivo results confirm a role for RIAM in the regulation of some, but not all, leukocyte integrins and suggest that RIAM-regulated integrin activation is required for trafficking of lymphocytes from blood into pLNs and BM, where relatively high shear forces exist in high endothelial venules and sinusoids, respectively.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos B/inmunología , Quimiotaxis de Leucocito/inmunología , Proteínas de la Membrana/inmunología , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Adhesión Celular/inmunología , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Linfocitos T/citología , Linfocitos T/metabolismo , Proteínas de Unión al GTP rap1/inmunología , Proteínas de Unión al GTP rap1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...