Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 636-646, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39053411

RESUMEN

The electrocatalytic nitrate reduction reaction (NO3- RR) has immense potential to alleviate the problem of groundwater pollution and may also become a key route for the environmentally benign production of ammonia (NH3) products. Here, the unique effects of interfacial electric fields arising from asymmetric chemical potentials and local defects were integrated into the binary Bi2S3-Bi2O3 sublattices for enhancing electrocatalytic nitrate reduction reactions. The obtained binary system showed a superior Faraday efficiency (FE) for ammonia production of 94 % and an NH3 yield rate of 89.83 mg gcat-1h-1 at -0.4 V vs. RHE. Systematic experimental and computational results confirmed that the concerted interplay between interfacial electric fields and local defects not only promoted the accumulation and adsorption of NO3-, but also contributed to the destabilization of *NO and the subsequent deoxygenation hydrogenation reaction. This work will stimulate future designs of heterostructured catalysts for efficient electrocatalytic nitrate reduction reactions.

2.
ACS Appl Mater Interfaces ; 16(27): 35793-35804, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949083

RESUMEN

Mixed metal oxides (MMOs) are a promising class of electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Despite their importance for sustainable energy schemes, our understanding of relevant reaction pathways, catalytically active sites, and synergistic effects is rather limited. Here, we applied synchrotron-based X-ray absorption spectroscopy (XAS) to explore the evolution of the amorphous Co-Cu-W MMO electrocatalyst, shown previously to be an efficient bifunctional OER and HER catalyst for water splitting. Ex situ XAS measurements provided structural environments and the oxidation state of the metals involved, revealing Co2+ (octahedral), Cu+/2+ (tetrahedral/square-planar), and W6+ (octahedral) centers. Operando XAS investigations, including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), elucidated the dynamic structural transformations of Co, Cu, and W metal centers during the OER and HER. The experimental results indicate that Co3+ and Cu0 are the active catalytic sites involved in the OER and HER, respectively, while Cu2+ and W6+ play crucial roles as structure stabilizers, suggesting strong synergistic interactions within the Co-Cu-W MMO system. These results, combined with the Tafel slope analysis, revealed that the bottleneck intermediate during the OER is Co3+ hydroperoxide, whose formation is accompanied by changes in the Cu-O bond lengths, pointing to a possible synergistic effect between Co and Cu ions. Our study reveals important structural effects taking place during MMO-driven OER/HER electrocatalysis and provides essential experimental insights into the complex catalytic mechanism of emerging noble-metal-free MMO electrocatalysts for full water splitting.

3.
Mater Horiz ; 11(15): 3604-3612, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747452

RESUMEN

The development of effective and novel flame retardants has been attracting considerable attention in extenuating the fire threat of flammable polymer materials including the widely-used epoxy resins. In this work, we pioneeringly report the construction of transition-metal-substituted polyoxometalate-ionic liquids (tmsPOM-ILs) as effective flame retardants, which consist of tetra-metal-containing POMs ([M4(H2O)2(PW9O34)2]10-, M4P2, M = Ni, Cu) anions and tetra-n-heptylammonium [(n-C7H15)4N+, THPA] cations. The resulting tmsPOM-ILs exhibited remarkably improved fire-safety of the epoxy resin (EP) matrix and even at a loading amount of as low as 3 wt%, the flame retardancy efficiency was even higher than that of commercial flame retardants (aluminum hydroxide (ATH), triphenyl phosphate (TPP), and decabromodiphenyl ethane (DBDPE)). Physicochemical and mechanistic studies revealed that the remarkable flame retardancy performance of the tmsPOM-ILs reported is due to their excellent epoxy matrix compatibility and remarkable catalytic charring ability. This work opens up a brand-new research direction of developing next-generation compatible and effective tmsPOM-based molecular flame retardants at the molecular level.

4.
Chemistry ; 30(25): e202303250, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411403

RESUMEN

Visible light-induced charge separation and directional charge transfer are cornerstones for artificial photosynthesis and the generation of solar fuels. Here, we report synthetic access to a series of noble metal-free donor-acceptor dyads based on bodipy light-absorbers and redox-active quinone/anthraquinone charge storage sites. Peripheral functionalization of the quinone/anthraquinone units with alkynes primes the dyads for integration into a range of light-harvesting systems, e. g., by Cu-catalyzed cycloadditions (CLICK chemistry) or Pd-catalyzed C-C cross-coupling reactions. Initial photophysical, electrochemical and theoretical analyses reveal the principal processes during the light-induced charge separation in the reported dyads.

5.
Macromol Rapid Commun ; 45(5): e2300448, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232973

RESUMEN

Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.


Asunto(s)
Alanina/análogos & derivados , Hidrogeles , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Hidrogeles/química , Luz , Catálisis
6.
Adv Mater ; 36(7): e2305730, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37899494

RESUMEN

Thiomolybdates are molecular molybdenum-sulfide clusters formed from Mo centers and sulfur-based ligands. For decades, they have attracted the interest of synthetic chemists due to their unique structures and their relevance in biological systems, e.g., as reactive sites in enzymes. More recently, thiomolybdates are explored from the catalytic point of view and applied as homogeneous and molecular mimics of heterogeneous molybdenum sulfide catalysts. This review summarizes prominent examples of thiomolybdate-based electro- and photocatalysis and provides a comprehensive analysis of their reactivities under homogeneous and heterogenized conditions. Active sites of thiomolybdates relevant for the hydrogen evolution reaction are examined, aiming to shed light on the link between cluster structure and performance. The shift from solution-phase to surface-supported thiomolybdates is discussed with a focus on applications in electrocatalysis and photocatalysis. The outlook highlights current trends and emerging areas of thiomolybdate research, ending with a summary of challenges and key takeaway messages based on the state-of-the-art research.

7.
Angew Chem Int Ed Engl ; 62(50): e202314999, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37889729

RESUMEN

The activation of molecular hydrogen is a key process in catalysis. Here, we demonstrate how polyoxometalate (POM)-based heterogeneous compounds functionalized with Platinum particles activate H2 by synergism between a hydrogen spillover mechanism and electron-proton transfer by the POM. This interplay facilitates the selective catalytic reduction of olefins and nitroarenes with high functional group tolerance. A family of polyoxotungstates covalently functionalized with boronic acids is reported. In the solid-state, the compounds are held together by non-covalent interactions (π-π stacking and hydrogen bonding). The resulting heterogeneous nanoscale particles form stable colloidal dispersions in acetonitrile and can be surface-functionalized with platinum nanoparticles by in situ photoreduction. The resulting materials show excellent catalytic activity in hydrogenation of olefins and nitrobenzene derivatives under mild conditions (1 bar H2 and room temperature).

8.
Nat Commun ; 14(1): 5563, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689696

RESUMEN

The introduction of metal sites into molecular metal oxides, so-called polyoxometalates, is key for tuning their structure and reactivity. The complex mechanisms which govern metal-functionalization of polyoxometalates are still poorly understood. Here, we report a coupled set of light-dependent and light-independent reaction equilibria controlling the mono- and di-metal-functionalization of a prototype molecular vanadium oxide cluster. Comprehensive mechanistic analyses show that coordination of a Mg2+ ion to the species {(NMe2H2)2[VV12O32Cl]}3- results in formation of the mono-functionalized {(NMe2H2)[(MgCl)VV12O32Cl]}3- with simultaneous release of a NMe2H2+ placeholder cation. Irradiation of this species with visible light results in one-electron reduction of the vanadate, exchange of the second NMe2H2+ with Mg2+, and formation/crystallization of the di-metal-functionalized [(MgCl)2VIVVV11O32Cl]4-. Mechanistic studies show how stimuli such as light or competing cations affect the coupled equilibria. Transfer of this synthetic concept to other metal cations is also demonstrated, highlighting the versatility of the approach.

9.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37699127

RESUMEN

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Membrana Dobles de Lípidos/química , Liposomas/química , Dimiristoilfosfatidilcolina/química , Fármacos Fotosensibilizantes , Fosfolípidos/química
10.
Nat Chem ; 15(7): 899-900, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37291454
11.
Sci Total Environ ; 884: 163739, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142021

RESUMEN

Rock-based materials exposed to outdoor environments are naturally colonised by an array of microorganisms, which can cause dissolution and fracturing of the natural stone. Biocolonisation of monuments and architectures of important cultural heritage therefore represents an expensive and recurring problem for local authorities and private owners alike. In this area, preventive strategies to mitigate biocolonisation are generally preferred to curative approaches, such as mechanical cleaning by brush or high-pressure cleaning, to remove pre-existing patina. The aim of this work was to study the interaction between biocidal polyoxometalate-ionic liquid (POM-IL) coatings and calcareous stones and evaluate the capacity of these coatings to prevent biocolonisation through a series of accelerated ageing studies in climate chambers, carried out in parallel with a two-year period of outdoor exposure in north-eastern France. Our experiments show that POM-IL coatings did not affect water vapour transfer nor significantly alter the total porosity of the calcareous stones. Simulated weathering studies replicating harsh (hot and wet) climatic weather conditions demonstrated that the colour variation of POM-IL-coated stones did not vary significantly with respect to the natural uncoated stones. Accelerated biocolonisation studies performed on the weathered POM-IL-coated stones proved that the coatings were still capable of preventing colonisation by an algal biofilm. However, a combination of colour measurements, chlorophyll fluorescence data, and scanning electron microscopy imaging of stones aged outdoors in northern France for two years showed that coated and uncoated stone samples showed signs of colonisation by fungal mycelium and phototrophs. Altogether, our results demonstrate that POM-ILs are suitable as preventative biocidal coatings for calcareous stones, but the correct concentrations must be chosen to achieve a balance between porosity of the stone, the resulting colour variation and the desired duration of the biocidal effect over longer periods of time, particularly in outdoor environments.


Asunto(s)
Líquidos Iónicos , Francia
12.
ACS Appl Mater Interfaces ; 15(17): 20833-20842, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37026740

RESUMEN

We report on a photocatalytic setup that utilizes the organic photosensitizer (PS) diiodo-BODIPY and the non-precious-metal-based hydrogen evolution reaction (HER) catalyst (NH4)2[Mo3S13] together with a polyampholytic unimolecular matrix poly(dehydroalanine)-graft-poly(ethylene glycol) (PDha-g-PEG) in aqueous media. The system shows exceptionally high performance with turnover numbers (TON > 7300) and turnover frequencies (TOF > 450 h-1) that are typical for noble-metal-containing systems. Excited-state absorption spectra reveal the formation of a long-lived triplet state of the PS in both aqueous and organic media. The system is a blueprint for developing noble-metal-free HER in water. Component optimization, e.g., by modification of the meso substituent of the PS and the composition of the HER catalyst, is further possible.

13.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36876900

RESUMEN

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

14.
Dalton Trans ; 52(13): 4002-4007, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36877573

RESUMEN

The self-assembly of molecular metal oxides, polyoxometalates (POMs), can be controlled using internal or, more rarely, external templates. Here, we explore how the interplay between internal templates (halides, oxoanions) and organic external templates (protonated cyclene species) affect the self-assembly of a model polyoxovanadate cluster, [V12O32X]n- (X = Cl-, Br-, NO3-). A combination of crystallographic analyses, spectroscopic studies and in situ as well as solid-state 51V NMR spectroscopy provide critical insights into the initial formation of an intermediate vanadate species formed during the process. Structural and spectroscopic studies suggest that a direct interaction between internal and external templates allows tuning of the internal template position within the cluster cavity. These insights form the basis for further developing the template-driven synthetic chemistry of polyoxovanadates.

15.
Inorg Chem ; 62(3): 1218-1225, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36630536

RESUMEN

The organo-functionalization of metal oxides is a key strategy to introduce new functionalities. Often, phosphonates are used to anchor organic moieties to a range of metal oxides. Despite their widespread use, there is a lack of understanding of the parameters which enable selective and efficient formation of organophosphonate-metal oxide hybrids. Here, we report fundamental insights into the mechanism of phosphonate anchoring to a molecular metal oxide model. Specifically, we use in situ 31P NMR spectroscopy to follow the acid-catalyzed deprotection of a model phosphonate and its subsequent condensation to form a phosphonate-functionalized Dawson-polyoxometalate. Our study shows that the nucleophilicity of the acid anion is a key parameter which controls the clean and selective deprotection and polyoxometalate attachment of phosphonates. This insight will allow researchers to expand the scope of phosphonate anchoring to metal oxides by enabling the development of mild and scalable syntheses.


Asunto(s)
Organofosfonatos , Organofosfonatos/química , Ácidos Fosforosos/química , Óxidos/química , Catálisis
16.
ACS Appl Mater Interfaces ; 15(1): 1486-1494, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36578107

RESUMEN

Although two-dimensional (2D) materials with ultrathin geometry and extraordinary electrical attributes have attracted substantial concern, exploiting new-type 2D materials is still a great challenge. In this work, an unprecedented single-layer pure polyoxometalate (POM) 2D material (2D-1) was prepared by ultrasonically exfoliating a one-dimensional (1D)-chain heterometallic crystalline germanotungstate Na4[Ho(H2O)6]2[Fe4(H2O)2(pic)6Ge2W20O72]·16H2O (1) (Hpic = picolinic acid). The 1D polymeric chain of 1 is assembled from particular {Ge2W20}-based [Fe4(H2O)2(pic)6Ge2W20O72]10- segments through bridging [Ho(H2O)6]3+ cations. 2D-1 is formed by π-π interaction driving force among adjacent 1D polymeric chains of 1. Also, the peroxidase-mimicking properties of 2D-1 toward detecting H2O2 were evaluated and good detection result was observed with a limit of detection (LOD) of 58 nM. Density functional theory (DFT) calculation further confirms that 2D-1 displays outstanding catalytic activity and active sites are located on Fe centers and Hpic ligands. Under the catalysis of uricase, uric acid can be transformed to allantoin and H2O2, and then, H2O2 oxidizes TMB to its blue ox-TMB in the presence of 2D-1 as a catalyst. Then, we utilized this cascade reaction to detect uric acid, which also exhibits prominent results. This research opens a door to prepare ultrathin pure POM 2D materials and broadens the scope of potential applications of POMs in biology and iatrology.


Asunto(s)
Peróxido de Hidrógeno , Peroxidasa , Peroxidasa/química , Peróxido de Hidrógeno/química , Ácido Úrico , Peroxidasas , Polímeros , Colorantes , Catálisis , Colorimetría/métodos
17.
Chemistry ; 29(13): e202203220, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458818

RESUMEN

The design of efficient and stable oxygen evolution reaction (OER) catalysts based on noble-metal-free materials is crucial for energy conversion and storage. In this work, it was demonstrated how polyoxometalate (POM)-doped ZIF-67 can be converted into a stable oxygen evolution electrocatalyst by chemical etching, cation exchange, and thermal annealing steps. Characterization by X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy indicate that POM-doped ZIF-67 derived carbon-supported metal oxides were synthesized. The resulting composite shows structural and compositional advantages which lead to low overpotential (306 mV at j=10 mA ⋅ cm-2 ) and long-term stability under harsh OER conditions (1.0 M aqueous KOH).

18.
Chemistry ; 29(15): e202203469, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36519520

RESUMEN

CLICK-chemistry has become a universal route to covalently link organic molecules functionalized with azides and alkynes, respectively. Here, we report how CLICK-chemistry can be used to attach oligoaromatic organic moieties to Dawson-type polyoxometalates. In step one, the lacunary Dawson anion [α2 -P2 W17 O61 ]6- is functionalized with phosphonate anchors featuring peripheral azide groups. In step two, this organic-inorganic hybrid undergoes microwave-assisted CLICK coupling. We demonstrate the versatility of this route to access a series of Dawson anions covalently functionalized with oligoaromatic groups. The supramolecular chemistry and aggregation of these systems in solution is explored, and we report distinct changes in charge-transfer behavior depending on the size of the oligoaromatic π-system.

19.
Chem Commun (Camb) ; 58(96): 13397-13400, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382678

RESUMEN

Metal cations are used to control the selective crystallization of organic-inorganic supramolecular polymers. Two complementary monomers, a dodecanuclear vanadate [V12O32(NO3)]5- and the organic macrocycle cyclen assemble into hybrid host-guest aggregates. In the presence of Ba2+ or La3+, supramolecular polymerization and crystallization is driven by a complex interplay of cyclene protonation, hydrogen-bonding and electrostatics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA