Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 16(9): 2076-2086, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654830

RESUMEN

The ability of organisms to combine autotrophy and heterotrophy gives rise to one of the most successful nutritional strategies on Earth: mixotrophy. Sponges are integral members of shallow-water ecosystems and many host photosynthetic symbionts, but studies on mixotrophic sponges have focused primarily on species residing in high-light environments. Here, we quantify the contribution of photoautotrophy to the respiratory demand and total carbon diet of the sponge Chondrilla caribensis, which hosts symbiotic cyanobacteria and lives in low-light environments. Although the sponge is net heterotrophic at 20 m water depth, photosynthetically fixed carbon potentially provides up to 52% of the holobiont's respiratory demand. When considering the total mixotrophic diet, photoautotrophy contributed an estimated 7% to total daily carbon uptake. Visualization of inorganic 13C- and 15N-incorporation using nanoscale secondary ion mass spectrometry (NanoSIMS) at the single-cell level confirmed that a portion of nutrients assimilated by the prokaryotic community was translocated to host cells. Photoautotrophy can thus provide an important supplemental source of carbon for sponges, even in low-light habitats. This trophic plasticity may represent a widespread strategy for net heterotrophic sponges hosting photosymbionts, enabling the host to buffer against periods of nutritional stress.


Asunto(s)
Poríferos , Energía Solar , Animales , Carbono , Dieta , Ecosistema , Agua
2.
Aquat Toxicol ; 190: 1-10, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28662416

RESUMEN

The essential role of thyroid hormone (TH) signaling in mammalian development warrants the examination of man-made chemicals for its disruption. Among vertebrate species, the molecular components of TH signaling are highly conserved, including the thyroid hormone receptors (TRs), their heterodimer binding partners the retinoid-X receptors (RXRs), and their DNA recognition sequences (TREs). This molecular conservation allows examination of potential TH disruption in the tractable, in vivo model system of amphibian metamorphosis. Metamorphosis requires TH signaling for both instigation and progression, and it provides dramatic and well-characterized phenotypes involving different cell fates. Here we describe a quantitative, precocious-metamorphosis assay suite we developed using one-week post-fertilization (PF) Xenopus laevis tadpoles in order to assess disruption of TH signaling. Tadpoles at this developmental stage (Nieuwkoop-Faber (NF)-48) are competent to respond to TH hormone, although not yet producing TH, along many metamorphic pathways, and they are uniform in size. This allowed us to quantify changes in morphology associated with natural metamorphosis (e.g. gill and tail resorption, brain expansion, and craniofacial remodeling) after five days of treatment. Using the same tadpoles from morphological measurements, we quantified a 20-fold increase in TH-induced cellular proliferation in the rostral head region by whole-mount immunocytochemistry. At the molecular level, we used F3-generation tadpoles from a transgenic X. laevis line, which expresses luciferase under the control of a native TRE, to assess the ability of compounds to disrupt TR function. The luciferase reporter showed over 10-fold activation by physiologic concentrations of TH. We used the synthetic TR antagonist NH-3 to demonstrate the feasibility of our assay suite to measure inhibition of TH activity at the level of the receptor. Finally, we assessed the capabilities of suspected TH-disrupting chemicals tetrabrominated diphenyl ether 47 (BDE-47) and tetrabromobisphenol A (TBBPA). We found that BDE-47 displays general toxicity rather than TH disruption, as it did not increase brain width nor affect the TRE-luciferase reporter. However, TBBPA, a suspected TR antagonist, although not effective in antagonizing cell proliferation, significantly inhibited the TRE-luciferase reporter, suggesting that it bears closer scrutiny as a TH disruptor. Overall the assay suite has important advantages over the classical tadpole metamorphosis assays with respect to the uniformity of animal size, small test volume, reproducibility, and short test period. The assays are performed before endogenous TH production and free feeding start, which further reduces complexity and variability.


Asunto(s)
Disruptores Endocrinos/toxicidad , Larva/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Bioensayo , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Receptores de Hormona Tiroidea/genética , Reproducibilidad de los Resultados , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...