Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pflugers Arch ; 468(8): 1375-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27287068

RESUMEN

SCN5A encodes for the α-subunit of the cardiac voltage-gated sodium channel Nav1.5. Gain-of-function mutations in SCN5A are related to congenital long QT syndrome (LQTS3) characterized by delayed cardiac repolarization, leading to a prolonged QT interval in the ECG. Loss-of-function mutations in SCN5A are related to Brugada syndrome (BrS), characterized by an ST-segment elevation in the right precordial leads (V1-V3). The aim of this study was the characterization of a large set of novel SCN5A variants found in patients with different cardiac phenotypes, mainly LQTS and BrS. SCN5A variants of 13 families were functionally characterized in Xenopus laevis oocytes using the two-electrode voltage-clamp technique. We found in most of the cases, but not all, that the electrophysiology of the variants correlated with the clinically diagnosed phenotype. A susceptibility to develop LQTS can be suggested in patients carrying the variants S216L, K480N, A572D, F816Y, and G983D. However, taking the phenotype into account, the presence of the variants in genomic data bases, the mutational segregation, combined with our in vitro and in silico experiments, the variants S216L, S262G, K480N, A572D, F816Y, G983D, and T1526P remain as variants of unknown significance. However, the SCN5A variants R568H and A993T can be classified as pathogenic LQTS3 causing mutations, while R222stop and R2012H are novel BrS causing mutations.


Asunto(s)
Fenómenos Electrofisiológicos/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Animales , Síndrome de Brugada/genética , Trastorno del Sistema de Conducción Cardíaco , Sistema de Conducción Cardíaco/metabolismo , Humanos , Masculino , Oocitos/metabolismo , Fenotipo , Xenopus laevis/metabolismo
2.
PLoS One ; 11(2): e0148461, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863447

RESUMEN

Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds for potential to function as anticonvulsants.


Asunto(s)
Anticonvulsivantes/farmacología , Calcio/metabolismo , Drosophila melanogaster/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Neuronas Motoras/efectos de los fármacos , 4-Aminopiridina/farmacología , Adulto , Aminas/farmacología , Animales , Anticonvulsivantes/síntesis química , Antipaína/farmacología , Calmodulina/genética , Calmodulina/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Convulsivantes/farmacología , Ácidos Ciclohexanocarboxílicos/farmacología , Dipiridamol/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Gabapentina , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Larva/citología , Larva/efectos de los fármacos , Larva/metabolismo , Masculino , Imagen Molecular/métodos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Fenitoína/farmacología , Picrotoxina/farmacología , Cultivo Primario de Células , Canales de Sodio/genética , Canales de Sodio/metabolismo , Ácido gamma-Aminobutírico/farmacología
3.
J Biol Chem ; 289(39): 26762-26771, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25100718

RESUMEN

Voltage-gated potassium (Kv) 1.1 channels undergo a specific enzymatic RNA deamination, generating a channel with a single amino acid exchange located in the inner pore cavity (Kv1.1(I400V)). We studied I400V-edited Kv1.1 channels in more detail and found that Kv1.1(I400V) gave rise to much smaller whole-cell currents than Kv1.1. To elucidate the mechanism behind this current reduction, we conducted electrophysiological recordings on single-channel level and did not find any differences. Next we examined channel surface expression in Xenopus oocytes and HeLa cells using a chemiluminescence assay and found the edited channels to be less readily expressed at the surface membrane. This reduction in surface expression was verified by fluorescence imaging experiments. Western blot analysis for comparison of protein abundances and glycosylation patterns did not show any difference between Kv1.1 and Kv1.1(I400V), further indicating that changed trafficking of Kv1.1(I400V) is causing the current reduction. Block of endocytosis by dynasore or AP180C did not abolish the differences in current amplitudes between Kv1.1 and Kv1.1(I400V), suggesting that backward trafficking is not affected. Therefore, our data suggest that I400V RNA editing of Kv1.1 leads to a reduced current size by a decreased forward trafficking of the channel to the surface membrane. This effect is specific for Kv1.1 because coexpression of Kv1.4 channel subunits with Kv1.1(I400V) abolishes these trafficking effects. Taken together, we identified RNA editing as a novel mechanism to regulate homomeric Kv1.1 channel trafficking. Fine-tuning of Kv1.1 surface expression by RNA editing might contribute to the complexity of neuronal Kv channel regulation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Canal de Potasio Kv.1.1/biosíntesis , Edición de ARN/fisiología , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Células HEK293 , Células HeLa , Humanos , Canal de Potasio Kv.1.1/genética , Mutación Missense , Transporte de Proteínas/fisiología , Xenopus laevis
4.
Chem Biol Drug Des ; 81(1): 13-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23253127

RESUMEN

Virtually all organisms use RNA editing as a powerful post-transcriptional mechanism to recode genomic information and to increase functional protein diversity. The enzymatic editing of pre-mRNA by ADARs and CDARs is known to change the functional properties of neuronal receptors and ion channels regulating cellular excitability. However, RNA editing is also an important mechanism for genes expressed outside the brain. The fact that RNA editing breaks the 'one gene encodes one protein' hypothesis is daunting for scientists and a probable drawback for drug development, as scientists might search for drugs targeting the 'wrong' protein. This possible difficulty for drug discovery and development became more evident from recent publications, describing that RNA editing events have profound impact on the pharmacology of some common drug targets. These recent studies highlight that RNA editing can cause massive discrepancies between the in vitro and in vivo pharmacology. Here, we review the putative impact of RNA editing on drug discovery, as RNA editing has to be considered before using high-throughput screens, rational drug design or choosing the right model organism for target validation.


Asunto(s)
Descubrimiento de Drogas , Edición de ARN/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Humanos , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Preparaciones Farmacéuticas/metabolismo , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
5.
J Biol Chem ; 286(16): 13977-84, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21362619

RESUMEN

Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.


Asunto(s)
Benzamidas/farmacología , Bencenoacetamidas/farmacología , Proteínas del Tejido Nervioso/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Potasio/química , Alanina/química , Animales , Benzamidas/química , Bencenoacetamidas/química , Sitios de Unión , ADN Complementario/metabolismo , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Mutagénesis , Mutagénesis Sitio-Dirigida , Oocitos/citología , Técnicas de Placa-Clamp , Conformación Proteica , Xenopus laevis
6.
EMBO J ; 29(13): 2101-13, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20461057

RESUMEN

The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvbeta subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Edición de ARN , Tetraetilamonio/farmacología , Animales , Ácido Araquidónico/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Ratas , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA