Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 896: 165125, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37392881

RESUMEN

A detailed understanding of the factors that impact bank erodibility is necessary to effectively model changes in channel form. This study evaluated the combined contributions of roots and soil microorganisms to soil resistance against fluvial erosion. To do this, three flume walls were constructed to simulate unvegetated and rooted streambanks. Unamended and organic material (OM) amended soil treatments with either no-roots (bare soil), synthetic (inert) roots, or living roots (Panicum virgatum) were created and tested with the corresponding flume wall treatment. OM stimulated the production of extracellular polymeric substances (EPS) and appeared to increase the applied stress required to initiate soil erosion. Synthetic fibers alone provided a base reduction in soil erosion, regardless of the flow rate used. When used in combination, synthetic roots and OM-amendments reduced erosion rates by 86 % or more compared to bare soil; this reduction was identical to the live rooted treatments (95 % to 100 %). In summary, a synergistic relationship between roots and organic carbon inputs can significantly reduce soil erosion rates due to fiber reinforcement and EPS production. These results indicate that root-biochemical interactions, like root physical mechanisms, play an important role in influencing channel migration rates due to reductions in streambank erodibility.


Asunto(s)
Raíces de Plantas , Suelo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA