Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 14(1): 13069, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844820

RESUMEN

Insertion mutations in exon 20 of the epidermal growth factor receptor gene (EGFR exon20ins) are rare, heterogeneous alterations observed in non-small cell lung cancer (NSCLC). With a few exceptions, they are associated with primary resistance to established EGFR tyrosine kinase inhibitors (TKIs). As patients carrying EGFR exon20ins may be eligible for treatment with novel therapeutics-the bispecific antibody amivantamab, the TKI mobocertinib, or potential future innovations-they need to be identified reliably in clinical practice for which quality-based routine genetic testing is crucial. Spearheaded by the German Quality Assurance Initiative Pathology two international proficiency tests were run, assessing the performance of 104 participating institutes detecting EGFR exon20ins in tissue and/or plasma samples. EGFR exon20ins were most reliably identified using next-generation sequencing (NGS). Interestingly, success rates of institutes using commercially available mutation-/allele-specific quantitative (q)PCR were below 30% for tissue samples and 0% for plasma samples. Most of these mutation-/allele-specific (q)PCR assays are not designed to detect the whole spectrum of EGFR exon20ins mutations leading to false negative results. These data suggest that NGS is a suitable method to detect EGFR exon20ins in various types of patient samples and is superior to the detection spectrum of commercially available assays.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Exones , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Ensayos de Aptitud de Laboratorios , Anticuerpos Biespecíficos/uso terapéutico , Mutagénesis Insercional , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445733

RESUMEN

Pulmonary sarcomatoid carcinoma (PSC) has highly aggressive biological behaviour and poor clinical outcomes, raising expectations for new therapeutic strategies. We characterized 179 PSC by immunohistochemistry, next-generation sequencing and in silico analysis using a deep learning algorithm with respect to clinical, immunological and molecular features. PSC was more common in men, older ages and smokers. Surgery was an independent factor (p < 0.01) of overall survival (OS). PD-L1 expression was detected in 82.1% of all patients. PSC patients displaying altered epitopes due to processing mutations showed another PD-L1-independent immune escape mechanism, which also significantly influenced OS (p < 0.02). The effect was also maintained when only advanced tumour stages were considered (p < 0.01). These patients also showed improved survival with a significant correlation for immunotherapy (p < 0.05) when few or no processing mutations were detected, although this should be interpreted with caution due to the small number of patients studied. Genomic alterations for which there are already approved drugs were present in 35.4% of patients. Met exon 14 skipping was found more frequently (13.7%) and EGFR mutations less frequently (1.7%) than in other NSCLC. In summary, in addition to the divergent genomic landscape of PSC, the specific immunological features of this prognostically poor subtype should be considered in therapy stratification.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Masculino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Mutación
3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293366

RESUMEN

Precision oncology and immunotherapy have revolutionized the treatment of advanced non-small-cell lung cancer (NSCLC). Emerging studies show that targeted therapies are also beneficial for patients with driver alterations such as epidermal growth factor receptor (EGFR) mutations in early-stage NSCLC (stages I-IIIA). Furthermore, patients with elevated programmed death-ligand 1 (PD-L1) expression appear to respond favorably to adjuvant immunotherapy. To determine the frequency of genomic alterations and PD-L1 status in early-stage NSCLC, we retrospectively analyzed data from 2066 unselected, single-center patients with NSCLC diagnosed using next-generation sequencing and immunohistochemistry. Nine-hundred and sixty-two patients (46.9%) presented with early-stage NSCLC. Of these, 37.0% had genomic alterations for which targeted therapies have already been approved for advanced NSCLC. The frequencies of driver mutations in the early stages were equivalent to those in advanced stages, i.e., the rates of EGFR mutations in adenocarcinomas were 12.7% (72/567) and 12.0% (78/650) in early and advanced NSCLC, respectively (p = 0778). In addition, 46.3% of early-stage NSCLC cases were PD-L1-positive, with a tumor proportion score (TPS) of ≥1%. With comparable frequencies of driver mutations in early and advanced NSCLC and PD-L1 overexpression in nearly half of patients with early-stage NSCLC, a broad spectrum of biomarkers for adjuvant and neoadjuvant therapies is available, and several are currently being investigated in clinical trials.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Medicina de Precisión , Receptores ErbB/genética , Genómica , Mutación
4.
BMC Cancer ; 22(1): 46, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996407

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are currently one of the most promising therapy options in the field of oncology. Although the first pivotal ICI trial results were published in 2011, few biomarkers exist to predict their therapy outcome. PD-L1 expression and tumor mutational burden (TMB) were proven to be sometimes-unreliable biomarkers. We have previously suggested the analysis of processing escapes, a qualitative measurement of epitope structure alterations under immune system pressure, to provide predictive information on ICI response. Here, we sought to further validate this approach and characterize interactions with different forms of immune pressure. METHODS: We identified a cohort consisting of 48 patients with advanced non-small cell lung cancer (NSCLC) treated with nivolumab as ICI monotherapy. Tumor samples were subjected to targeted amplicon-based sequencing using a panel of 22 cancer-associated genes covering 98 mutational hotspots. Altered antigen processing was predicted by NetChop, and MHC binding verified by NetMHC. The NanoString nCounter® platform was utilized to provide gene expression data of 770 immune-related genes. Patient data from 408 patients with NSCLC were retrieved from The Cancer Genome Atlas (TCGA) as a validation cohort. RESULTS: The two immune escape mechanisms of PD-L1 expression (TPS score) (n = 18) and presence of altered antigen processing (n = 10) are mutually non-exclusive and can occur in the same patient (n = 6). Both mechanisms have exclusive influence on different genes and pathways, according to differential gene expression analysis and gene set enrichment analysis, respectively. Interestingly, gene expression patterns associated with altered processing were enriched in T cell and NK cell immune activity. Though both mechanisms influence different genes, they are similarly linked to increased immune activity. CONCLUSION: Pressure from the immune system will lay the foundations for escape mechanisms, leading to acquisition of resistance under therapy. Both PD-L1 expression and altered antigen processing are induced similarly by pronounced immunoactivity but in different context. The present data help to deepen our understanding of the underlying mechanisms behind those immune escapes.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Transcriptoma , Escape del Tumor , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Biología Computacional , Aprendizaje Profundo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad , Nivolumab/farmacología , Nivolumab/uso terapéutico , Estudios Retrospectivos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/inmunología , Escape del Tumor/efectos de los fármacos , Escape del Tumor/genética , Escape del Tumor/inmunología
5.
Cancer Manag Res ; 12: 7881-7890, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922086

RESUMEN

BACKGROUND: Immune checkpoint inhibition, especially the blockade of PD-1 and PD-L1, has become one of the most thriving therapeutic approaches in modern oncology. Immune evasion caused by altered tumor epitope processing (so-called processing escapes) may be one way to explain immune checkpoint inhibition therapy failure. In the present study, we aim to demonstrate the effects of processing escapes on immunotherapy outcome in NSCLC patients. PATIENTS AND METHODS: Whole exome sequencing data of 400 NSCLC patients (AdC and SCC) were extracted from the TCGA database. The ICB cohort was composed of primary tumor probes from 48 NSCLC patients treated with nivolumab. Mutations were identified by targeted amplicon-based sequencing including hotspots and whole exomes of 22 genes. The effect of mutations on proteasomal processing was evaluated by deep learning methods previously trained on 1260 known MHC-I ligands. Cox regression modelling was used to determine the influence on overall survival. RESULTS: In the TCGA cohort, processing escapes were associated with decreased overall survival (p= 0.0140). In the ICB cohort, patients showing processing escapes in combination with high levels of PD-L1 (n=8/48) also showed significantly decreased overall survival, independently of mutational load or PD-L1 status. CONCLUSION: The concept of altered epitope processing may help to understand immunotherapy failure. Especially when combined with PD-L1 status, this method can be used as a biomarker to identify patients not suitable for immunotherapy.

6.
Oncotarget ; 10(55): 5690-5702, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31620244

RESUMEN

The analysis of circulating cell-free DNA (cfDNA) extracted from peripheral blood can serve as a minimally invasive alternative to tumor tissue biopsies in cases with impaired access to tissue. Its clinical utility has been well demonstrated for EGFR T790M testing in lung cancer patients suffering progress after tyrosine kinase inhibitor treatment. At present, highly sensitive unique molecular identifiers (UMI)-based NGS for liquid biopsy testing is less established compared to single gene assays. However, the critical bottleneck are sufficient cfDNA yields, which are essentially required to obtain meaningful test results. We compared four different cfDNA extraction methods (Qiagen, Promega, Thermo and Stratec) using the same plasma samples in order to evaluate their suitability for further NGS analysis. We managed to draw 60 ml blood from 12 patients each and equally collected 30ml in PAXgene and EDTA tubes at the same time point, sufficient for total of 96 cfDNA extractions. CfDNA concentrations and total amounts were highest for Qiagen and Promega protocols, showing the best read length profiles after sequencing. Known oncogenic driver mutations were identified in 9 out of 12 patients with at least one of the cfDNA extraction methods, again favoring the extraction protocols from Qiagen and Promega. We also uncovered putative sequencing artefacts including known driver genes pointing to a careful consideration for the limit of detection of this methodology. Our study shows that pre-analytical optimization is necessary to achieve the maximum sensitivity of UMI-based sequencing but also highlights the low abundance of tumor-derived cfDNA in lung cancer samples.

7.
PLoS One ; 12(11): e0187700, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131833

RESUMEN

OBJECTIVE: Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome characterized by an increased risk of malignant peripheral nerve sheath tumors (MPNST). Chemotherapy of MPNST is still insufficient. In this study, we investigated whether human tumor Schwann cells derived from NF1 associated MPNST respond to all-trans retinoic acid (ATRA). We analyzed effects of ATRA and MEK inhibitor (MEKi) combination therapy. METHODS: MPNST cell lines S462, T265, NSF1 were treated with ATRA and MEKi U0126 and PD0325901. We assessed cell viability, proliferation, migration, apoptosis and differentiation as well as mRNA expression of RAR and RXR subtypes and ATRA target genes such as CRABP2, CYP26A1, RARB and PDK1. We also analyzed CRABP2 methylation in cell lines and performed immunohistochemistry of human MPNST specimens. RESULTS: ATRA therapy reduced viability and proliferation in S462 and T265 cells, accompanied by differentiation, apoptosis and reduced migration. NSF1 cells which lacked RXRG expression did not respond to ATRA. We furthermore demonstrated that ATRA signaling was functional for common targets, and that mRNA expression of CRABP2 and its targets was raised by ATRA therapy, whereas alternative pathways via FABP5 were not induced. Finally, combination of ATRA and MEKi demonstrated additively reduced viability of T265 and S462 cells. CONCLUSIONS: We observed therapeutic effects in two of three MPNST cell lines pronounced by combination therapy. These data point to a potentially successful treatment of MPNST by combined application of ATRA and MEK inhibitors such as U0126 or PD0325901.


Asunto(s)
Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Neurilemoma/tratamiento farmacológico , Neurofibromatosis 1/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Tretinoina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Perfilación de la Expresión Génica , Humanos , Metilación , Neurilemoma/complicaciones , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Transducción de Señal , Tretinoina/administración & dosificación , Tretinoina/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-24517913

RESUMEN

BACKGROUND: Activating epidermal growth factor receptor (EGFR) gene mutations can be successfully treated by EGFR tyrosine kinase inhibitors (EGFR-TKIs), but nearly 50% of all patients' exhibit progression of the disease until treatment because of T790M mutations. It is proposed that this is mostly caused by therapy-resistant tumor clones harboring a T790M mutation. Until now no cost-effective routine-diagnostic method for EGFR-resistance mutation status analysis is available leaving long-time response to TKI treatment to chance. Unambiguous identification of T790M EGFR mutations is mandatory to optimize initial treatment strategies. MATERIALS AND METHODS: Artificial EGFR T790M mutations and human wild-type gDNA were prepared in several dilution series. Preferential amplification using coamplification at lower denaturation temperature-PCR (COLD-PCR) of the mutant sequence and subsequent HybProbe melting curve detection or pyrosequencing were performed in comparison to normal processing. RESULTS: COLD-PCR-based amplification allowed the detection of 0.125% T790M mutant DNA in a background of wild-type DNA in comparison to 5% while normal processing. These results were reproducible. CONCLUSIONS: COLD-PCR is a powerful and cost-effective tool for routine diagnostic to detect underrepresented tumor clones in clinical samples. A diagnostic tool for unambiguous identification of T790M-mutated minor tumor clones is now available enabling optimized therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Análisis Mutacional de ADN/métodos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Frío , Análisis Costo-Beneficio , Análisis Mutacional de ADN/economía , Pruebas Diagnósticas de Rutina , Resistencia a Antineoplásicos/genética , Detección Precoz del Cáncer , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Reacción en Cadena de la Polimerasa/economía , Inhibidores de Proteínas Quinasas/uso terapéutico , Mejoramiento de la Calidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...