Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120414

RESUMEN

The development of pressure ulcers, associated with increased temperature and moisture in specific areas of the body, and the risk of microbial infections in patients lying in a static position for prolonged periods of time represents a serious issue in medicine. In order to prevent the formation of pressure ulcers, this work aims to present advanced nanostructured coatings developed by three research groups. Nanometric silver, ash and functionalized torrefied biomass were the basis for the treatment of wound dressings to improve thermal conductivity and antimicrobial properties of the conventional cotton gauzes. Each treatment was performed according to its own optimized method. The treated fabrics were characterized in terms of antimicrobial properties, heat transfer, morphology and hydrophobic behavior. The results demonstrated the effectiveness of the deposition treatments also in synergistic actions. In particular, the antibacterial efficacy was improved in all the samples by the addition of silver treatment, and the thermal conductivity was enhanced by around 58% with nanometric ashes. A further step of the study involved the designing of two multilayer systems evaluated using circuit models for determining the total thermal conductivity. In this way, both systems were designed with the aim to guarantee simultaneous efficacy: high antibacterial and hydrophilic properties at the skin level and more hydrophobic and conductive behaviors toward the external environment.

2.
Polymers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559886

RESUMEN

Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.

3.
Polymers (Basel) ; 13(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451307

RESUMEN

Organic wastes represent an increasing pollution problem due to the exponential growth of their presence in the waste stream. Among these, waste flour cannot be easily reused by transforming it into high-value-added products. Another major problem is represented by epoxy-based thermosets, which have wide use but also poor recyclability. The object of the present paper is, therefore, to analyze both of these problems and come up with innovative solutions. Indeed, we propose a completely new approach, aimed at reusing the organic waste flour, by converting it into high-value epoxy-based thermosets that could be fully recycled into a reusable plastic matrix when added to the waste epoxy-based thermosets. Throughout the research activity, the organic waste was transformed into an epoxidized prepolymer, which was then mixed with a bio-based monomer cured with a cleavable ammine. The latter reactant was based on Recyclamine™ by Connora Technologies, and in this paper, we demonstrate that this original approach could work with the synthetized epoxy prepolymers derived from the waste flour. The cured epoxies were fully characterized in terms of their thermal, rheological, and flexural properties. The results obtained showed optimal recyclability of the new resin developed.

4.
Nanomaterials (Basel) ; 11(4)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923486

RESUMEN

In this work, we studied the transport properties (thermal and electrical conductivity) of smart fabric materials treated with graphite nanomaterial stacks-acetone suspensions. An innovative and easy method to produce graphite nanomaterial stacks-acetone-based formulations, starting from a low-cost expandable graphite, is proposed. An original, economical, fast, and easy method to increase the thermal and electrical conductivity of textile materials was also employed for the first time. The proposed method allows the impregnation of smart fabric materials, avoiding pre-coating of the fibers, thus reducing costs and processing time, while obtaining a great increase in the transport properties. Two kinds of textiles, cotton and Lycra®, were selected as they represent the most used natural and artificial fabrics, respectively. The impact of the dimensions of the produced graphite nanomaterial stacks-acetone-based suspensions on both the uniformity of the treatment and the transport properties of the selected textile materials was accurately evaluated using several experimental techniques. An empirical relationship between the two transport properties was also successfully identified. Finally, several theoretical models were applied to predict the transport properties of the developed smart fabric materials, evidencing a good agreement with the experimental data.

5.
Polymers (Basel) ; 13(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652841

RESUMEN

In our previous study, an innovative method for sterilization, inertization, and valorization of the organic fraction of municipal solid waste (OFMSW), to be recycled in the production of composite panels, was developed. In this follow-up work, the effects of fire retardants on fire performance, durability, and the mechanical properties of the composite panels based on OFMSW and melamine-formaldehyde resin were investigated. The performance of panels without fire retardants (control panels) was compared to panels containing either mono-ammonium phosphate (PFR) or aluminium trihydrate (ATH) at a mass fraction of 1% and 10% (modified panels). As shown by cone calorimetry, the total heat released was already low (about 31 MJ/m2 at 50 kW/m2) in the control panels, further decreased in the modified panels with the addition of fire retardants, and reached the lowest value (about 1.4 MJ/m2) with 10% mass fraction of PFR. Hence, the addition of fire retardants had a beneficial effect on the response to fire of the panels; however, it also reduced the mechanical properties of the panels as measured by flexural tests. The deterioration of the mechanical properties was particularly obvious in panels containing 10% mass fraction of fire retardants, and they were further degraded by artificial accelerated weathering, carried out by boiling tests. Ultimately, the panels containing PFR at a mass fraction of 1% offered the best balance of fire resistance, durability, and mechanical performance within the formulations investigated in this study.

6.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668967

RESUMEN

In this study, an original and green procedure to produce water-based solutions containing nanometric recycled carbon particles is proposed. The nanometric particles are obtained starting from carbon waste ashes, produced by the wooden biomass pyro-gasification plant CMD (Costruzioni motori diesel) ECO20. The latter is an integrated system combining a downdraft gasifier, a spark-ignition internal combustion engine, an electric generator and syngas cleaning devices, and it can produce electric and thermal power up to 20 kWe and 40 kWth. The carbon-based ashes (CA) produced by the CMD ECO20 plant were, first, characterized by using differential scanning calorimetry (DSC) and microcomputed tomography (microCT). Afterward, they were reduced in powder by using a milling mortar and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry, thermogravimetric analysis (TGA), X-ray diffraction (WAXD) and Fourier-transform infrared (FTIR) spectroscopy. The optimization of an original procedure to reduce the dimensions of the ashes in an aqueous solution was then developed by using ball milling and sonication techniques, and the nanometric dimensions of the particles dispersed in water were estimated by dynamic light scattering (DLS) measurements in the order of 300 nm. Finally, possible industrial applications for the nanomaterials obtained from the waste ashes are suggested, including, for example, inks for Aerosol Jet® Printing (AJ® P).

7.
Polymers (Basel) ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599918

RESUMEN

This work represents an innovative study that, for the first time, explores the possibility to use waste flours to produce thermoplastic polymeric bio-films. To the best of our knowledge, this is the first time that waste flours, derived from bakeries, pizzerias or pasta factories, have been proposed for the production of bio-polymers, as a replacement of neat starch. To this aim, durum waste flour derived from a pasta factory, soft waste flour derived from pizzerias and neat maize starch used as control material were firstly analyzed from dimensional, morphological and chemical points of view. Afterwards, waste flour films were produced by the addition of a nature-based plasticizer, glycerol. Mechanical characterization of the plasticized thermoplastic films, produced by compression molding, evidenced low performances, even in the case of the neat maize starch. In order to improve the mechanical properties, the possibility to include polylactic acid and cardanol-based plasticizer was also investigated. Mass transport properties of all the produced bio-films were investigated by measuring their water vapor permeability and hygroscopic absorption. The durability properties of the bio-films were assessed by accelerated ageing tests, while the bio-degradability of the waste-based films was evaluated by measuring the solubility and the degradation in water. The physicochemical analyses of the novel bio-films evidenced good mechanical properties; specifically, the waste-based films showed a lower hygroscopic absorption and water solubility than those of the blends containing neat starch.

8.
Waste Manag ; 109: 212-221, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413725

RESUMEN

This paper reports the preparation of newly synthesized bio-epoxy monomers, suitable for replacing petrochemical-derived epoxy resins. An original green method able to produce epoxy monomers starting from neat carbohydrates, waste flours, and even from the organic fraction of municipal solid waste (OFMSW), was here proposed. Hence, for the first time, the epoxidation of carbohydrates was attained only through the exposition to UV and ozone radiation, without using any organic solvent to carry out the reaction. Besides the innovation in the epoxidation method, this work explored the possibility of valorizing waste materials, by recycling carbohydrate scraps; in particular, the exposition of waste flours and municipal solid waste to UV and ozone and their consequent epoxidation allowed obtaining green precursors for the production of a bio-based epoxy resin. Applicability and suitability of the synthesized compounds for epoxy monomers were investigated by curing experiments with a selected amount of a model cycloaliphatic amine-type hardener, i.e. isophorodiamine (IPDA).


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Anaerobiosis , Resinas Epoxi , Reciclaje
9.
Polymers (Basel) ; 11(11)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717280

RESUMEN

Following the innovative research activity carried out in the framework of the POIROT (Italian acronym of dOmotic Platform for Inertization and tRaceability of Organic wasTe) Project, this work aims to optimize the composition of the blends between the organic fraction of municipal solid waste (OFMSW) and formaldehyde-based resins, in order to improve the durability properties. To this aim, in this work, commercial urea-formaldehyde and melamine-formaldehyde powder polymers have been proposed for the inertization of the OFMSW, according to the previous optimized OFMSW-transformation process. A preliminary study about the mechanical properties of the composite panels produced with the different resins was carried out by evaluating compressive, flexural, and tensile performances of the panels. Artificial weathering by cyclic (heating-cooling) and boiling tests were carried out and the mechanical properties were evaluated in order to assess the resistance of the panels to water and humidity. The melamine-formaldehyde based resin had the best performances also when subjected to the weathering tests and despite the higher content of resin in the composites, the panels produced with melamine-formaldehyde have the lowest values of release of formaldehyde minimizing their potential hazard level.

10.
ACS Appl Mater Interfaces ; 7(28): 15494-505, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26151152

RESUMEN

A novel UV-light-curable nanocomposite material formed of a methacrylic-siloxane resin loaded with 1 wt % oleic acid and 3-(trimethoxysilyl)propyl methacrylate silane (OLEA/MEMO)-coated TiO2 nanorods (NRs) has been manufactured as a potential self-curing structural coating material for protection of monuments and artworks, optical elements, and dental components. OLEA-coated TiO2 NRs, presynthesized by a colloidal chemistry route, have been surface-modified by a treatment with the methacrylic-based silane coupling agent MEMO. The resulting OLEA/MEMO-capped TiO2 NRs have been dispersed in MEMO; that is a monomer precursor of the organic formulation, used as a "common solvent" for transferring the NRs in prepolymer components of the formulation. Differential scanning calorimetry and Fourier transform infrared spectroscopy have allowed investigation of the effects of the incorporation of the OLEA/MEMO-capped TiO2 NRs on reactivity and photopolymerization kinetics of the nanocomposite, demonstrating that the embedded NRs significantly increase curing reactivity of the neat organic formulation both in air and inert atmosphere. Such a result has been explained on the basis of the photoactivity of the nanocrystalline TiO2 which behaves as a free-radical donor photocatalyst in the curing reaction, finally turning out more effective than the commonly used commercial photoinitiator. Namely, the NRs have been found to accelerate the cure rate and increase cross-linking density, promoting multiple covalent bonds between the resin prepolymers and the NR ligand molecules, and, moreover, they limit inhibition effect of oxygen on photopolymerization. The NRs distribute uniformly in the photocurable matrix, as assessed by transmission electron microscopy analysis, and increase glass transition temperature and water contact angle of the nanocomposite with respect to the neat resin.

11.
Materials (Basel) ; 6(9): 3805-3825, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28788307

RESUMEN

An innovative photopolymerizable microgel modified UV-cured acrylic-silica hybrid formulation was developed and characterized for possible use as protective coating for different substrates. A deep investigation, aiming at providing a strong scientific basis for the production of organic-inorganic (O-I) hybrids exhibiting phase co-continuity, was firstly carried out. The O-I hybrid first proposed in this study was obtained from organic precursors with a high siloxane content, which are mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nanodomains dispersed within the crosslinked organic phase, as a result of the sol-gel process. The first part of the research deals with the selection and optimization of suitable systems through appropriate chemical modifications, in order to ensure that curing reactions can be carried out at room temperature and in the presence of UV radiation. Firstly, the silica domains are formed, followed by crosslinking reactions of the acrylic groups in the oligomer via a free radical polymerization. The crosslinking reaction was controlled with the use of a suitable photoinitiator. Most of the experimental work was devoted to understanding the morphology of the hybrid system, both in uncured and cured states, and to assess its final thermal and optical properties, using different experiential techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA