Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metallomics ; 8(9): 981-92, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27293072

RESUMEN

ATP7A is a P-type ATPase essential for cellular copper (Cu) transport and homeostasis. Loss-of-function ATP7A mutations causing systemic Cu deficiency are associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome. We previously identified two rare ATP7A missense mutations (P1386S and T994I) leading to a non-fatal form of motor neuron disorder, X-linked distal hereditary motor neuropathy (dHMNX), without overt signs of systemic Cu deficiency. Recent investigations using a tissue specific Atp7a knock out model have demonstrated that Cu plays an essential role in motor neuron maintenance and function, however the underlying pathogenic mechanisms of ATP7A mutations causing axonal degeneration remain unknown. We have generated an Atp7a conditional knock in mouse model of dHMNX expressing Atp7a(T985I), the orthologue of the human ATP7A(T994I) identified in dHMNX patients. Although a degenerative motor phenotype is not observed, the knock in Atp7a(T985I/Y) mice show altered Cu levels within the peripheral and central nervous systems, an increased diameter of the muscle fibres and altered myogenin and myostatin gene expression. Atp7a(T985I/Y) mice have reduced Atp7a protein levels and recapitulate the defective trafficking and altered post-translational regulatory mechanisms observed in the human ATP7A(T994I) patient fibroblasts. Our model provides a unique opportunity to characterise the molecular phenotype of dHMNX and the time course of cellular events leading to the process of axonal degeneration in this disease.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , Cobre/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedad de la Neurona Motora/patología , Mutación , Animales , Conducta Animal , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Miogenina/metabolismo , Miostatina/metabolismo
2.
Brain ; 139(Pt 6): 1649-56, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27009151

RESUMEN

We performed whole exome sequencing on a patient with Charcot-Marie-Tooth disease type 1 and identified a de novo mutation in PMP2, the gene that encodes the myelin P2 protein. This mutation (p.Ile52Thr) was passed from the proband to his one affected son, and segregates with clinical and electrophysiological evidence of demyelinating neuropathy. We then screened a cohort of 136 European probands with uncharacterized genetic cause of Charcot-Marie-Tooth disease and identified another family with Charcot-Marie-Tooth disease type 1 that has a mutation affecting an adjacent amino acid (p.Thr51Pro), which segregates with disease. Our genetic and clinical findings in these kindred demonstrate that dominant PMP2 mutations cause Charcot-Marie-Tooth disease type 1.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteína P2 de Mielina/genética , Adolescente , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Conducción Nerviosa/genética , Linaje , Adulto Joven
3.
Nat Genet ; 47(8): 926-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26168012

RESUMEN

Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent has been identified thus far. By whole-exome sequencing of patients with optic atrophy and CMT2, we identified four families with recessive mutations in SLC25A46. We demonstrate that SLC25A46, like Ugo1, is a modified carrier protein that has been recruited to the outer mitochondrial membrane and interacts with the inner membrane remodeling protein mitofilin (Fcj1). Loss of function in cultured cells and in zebrafish unexpectedly leads to increased mitochondrial connectivity, while severely affecting the development and maintenance of neurons in the fish. The discovery of SLC25A46 strengthens the genetic overlap between optic atrophy and CMT2 while exemplifying a new class of modified solute transporters linked to mitochondrial dynamics.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas Mitocondriales/genética , Mutación , Atrofia Óptica Autosómica Dominante/genética , Proteínas de Transporte de Fosfato/genética , Animales , Animales Modificados Genéticamente , Células COS , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Exoma/genética , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Atrofia Óptica Autosómica Dominante/patología , Linaje , Proteínas de Transporte de Fosfato/metabolismo , Unión Proteica , Interferencia de ARN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Pez Cebra/embriología , Pez Cebra/metabolismo
4.
J Neurol ; 262(9): 2124-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26100331

RESUMEN

Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Dineínas Citoplasmáticas/genética , Enfermedad de la Neurona Motora/genética , Mutación , Fenotipo , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Humanos , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/patología , Músculo Esquelético/patología
5.
Brain ; 137(Pt 11): 2897-902, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25125609

RESUMEN

Mutations in VCP have been reported to account for a spectrum of phenotypes that include inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia, hereditary spastic paraplegia, and 1-2% of familial amyotrophic lateral sclerosis. We identified a novel VCP mutation (p.Glu185Lys) segregating in an autosomal dominant Charcot-Marie-Tooth disease type 2 family. Functional studies showed that the Glu185Lys variant impaired autophagic function leading to the accumulation of immature autophagosomes. VCP mutations should thus be considered for genetically undefined Charcot-Marie-Tooth disease type 2.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Enfermedad de Charcot-Marie-Tooth/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Proteína que Contiene Valosina
6.
J Peripher Nerv Syst ; 19(2): 152-64, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24862862

RESUMEN

Charcot-Marie-Tooth disease (CMT) comprises a group of heterogeneous peripheral axonopathies affecting 1 in 2,500 individuals. As mutations in several genes cause axonal degeneration in CMT type 2, mutations in mitofusin 2 (MFN2) account for approximately 90% of the most severe cases, making it the most common cause of inherited peripheral axonal degeneration. MFN2 is an integral mitochondrial outer membrane protein that plays a major role in mitochondrial fusion and motility; yet the mechanism by which dominant mutations in this protein lead to neurodegeneration is still not fully understood. Furthermore, future pre-clinical drug trials will be in need of validated rodent models. We have generated a Mfn2 knock-in mouse model expressing Mfn2(R94W), which was originally identified in CMT patients. We have performed behavioral, morphological, and biochemical studies to investigate the consequences of this mutation. Homozygous inheritance leads to premature death at P1, as well as mitochondrial dysfunction, including increased mitochondrial fragmentation in mouse embryonic fibroblasts and decreased ATP levels in newborn brains. Mfn2(R94W) heterozygous mice show histopathology and age-dependent open-field test abnormalities, which support a mild peripheral neuropathy. Although behavior does not mimic the severity of the human disease phenotype, this mouse can provide useful tissues for studying molecular pathways associated with MFN2 point mutations.


Asunto(s)
Arginina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Mutación Puntual/genética , Triptófano/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Reacción de Fuga/fisiología , Conducta Exploratoria/fisiología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Técnicas In Vitro , Ratones , Ratones Transgénicos , Mitocondrias/patología , Actividad Motora/genética , Fuerza Muscular/genética , Consumo de Oxígeno/genética , Desempeño Psicomotor/fisiología
7.
Genes (Basel) ; 5(1): 13-32, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24705285

RESUMEN

Charcot-Marie-Tooth (CMT) neuropathies comprise a group of monogenic disorders affecting the peripheral nervous system. CMT is characterized by a clinically and genetically heterogeneous group of neuropathies, involving all types of Mendelian inheritance patterns. Over 1,000 different mutations have been discovered in 80 disease-associated genes. Genetic research of CMT has pioneered the discovery of genomic disorders and aided in understanding the effects of copy number variation and the mechanisms of genomic rearrangements. CMT genetic study also unraveled common pathomechanisms for peripheral nerve degeneration, elucidated gene networks, and initiated the development of therapeutic approaches. The reference genome, which became available thanks to the Human Genome Project, and the development of next generation sequencing tools, considerably accelerated gene and mutation discoveries. In fact, the first clinical whole genome sequence was reported in a patient with CMT. Here we review the history of CMT gene discoveries, starting with technologies from the early days in human genetics through the high-throughput application of modern DNA analyses. We highlight the most relevant examples of CMT genes and mutation mechanisms, some of which provide promising treatment strategies. Finally, we propose future initiatives to accelerate diagnosis of CMT patients through new ways of sharing large datasets and genetic variants, and at ever diminishing costs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA