Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067537

RESUMEN

Sparsely vegetated habitats of cliffs and screes act as refugia for many regional and local endemic specialized plant taxa most of which have evolved precisely for that type of habitat. The interplay between taxonomic, phylogenetic, and functional plant diversity on rock and scree habitats of extreme environmental conditions, enlightens the relations of plant communities and ecosystems and facilitates management planning for the conservation of biodiversity and ecosystem services. The identification of biodiversity patterns and hotspots (taxonomic, phylogenetic, and functional) contributes to the integration of the ecosystem services (ES) approach for the mapping and assessment of ecosystems and their services (MAES) implementation in Greece and the creation of thematic maps based on the MAES reporting format. The overlap among the protected areas' network revealed that almost all areas of cliffs and screes of medium, high, and very high taxonomic and phylogenetic plant endemism are included in the Natura 2000 area network. The results of this study provide the baseline information for ES assessments at sparsely vegetated land of cliffs and screes. Our results contribute to the implementation of certain indicators of the national set of MAES indicators in Greece such as (a) floristic diversity and (b) microrefugia of endemic diversity and support of decision-making.

3.
Biology (Basel) ; 10(3)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806693

RESUMEN

Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.

4.
Sci Data ; 8(1): 89, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758194

RESUMEN

Trees play a key role in the structure and function of many ecosystems worldwide. In the Mediterranean Basin, forests cover approximately 22% of the total land area hosting a large number of endemics (46 species). Despite its particularities and vulnerability, the biodiversity of Mediterranean trees is not well known at the taxonomic, spatial, functional, and genetic levels required for conservation applications. The WOODIV database fills this gap by providing reliable occurrences, four functional traits (plant height, seed mass, wood density, and specific leaf area), and sequences from three DNA-regions (rbcL, matK, and trnH-psbA), together with modelled occurrences and a phylogeny for all 210 Euro-Mediterranean tree species. We compiled, homogenized, and verified occurrence data from sparse datasets and collated them on an INSPIRE-compliant 10 × 10 km grid. We also gathered functional trait and genetic data, filling existing gaps where possible. The WOODIV database can benefit macroecological studies in the fields of conservation, biogeography, and community ecology.


Asunto(s)
Bases de Datos Factuales , Bosques , Árboles , Ecosistema , Región Mediterránea , Filogenia
5.
Biology (Basel) ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498512

RESUMEN

Biodiversity hotspots (BH) cover a small fraction of the Earth's surface, yet host numerous endemics. Human-induced biodiversity loss has been increasing worldwide, despite attempts to halt the extinction crisis. There is thus an urgent need to efficiently allocate the available conservation funds in an optimised conservation prioritization scheme. Identifying BH and endemism centres (EC) is therefore a valuable tool in conservation prioritization and planning. Even though Greece is one of the most plant species-rich European countries, few studies have dealt with the identification of BH or EC and none has ever incorporated phylogenetic information or extended to the national scale. Consequently, we are unaware of the extent that Special Areas of Conservation (SAC) of the Natura 2000 network efficiently protect Greek plant diversity. Here, we located for the first time at a national scale and in a phylogenetic framework, the areas serving as BH and EC, and assessed the effectiveness of the Greek SAC in safeguarding them. BH and EC are mainly located near mountainous areas, and in areas supposedly floristically impoverished, such as the central Aegean islands. A critical re-assessment of the Greek SAC might be needed to minimize the extinction risk of the Greek endemics, by focusing the conservation efforts also on the BH and EC that fall outside the established Greek SAC.

6.
Biology (Basel) ; 9(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751787

RESUMEN

Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete's plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete's unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the 'Anthropocene' era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...