Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35364006

RESUMEN

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Animales , Antígenos B7 , Linfocitos T CD8-positivos , Calcineurina/metabolismo , Neoplasias Colorrectales/metabolismo , Ratones , Factores de Transcripción NFATC/metabolismo , Inhibidor 1 de la Activación de Células T con Dominio V-Set
2.
Front Nutr ; 8: 758518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869528

RESUMEN

Nutrition appears to be an important environmental factor involved in the onset of inflammatory bowel diseases (IBD) through yet poorly understood biological mechanisms. Most studies focused on fat content in high caloric diets, while refined sugars represent up to 40% of caloric intake within industrialized countries and contribute to the growing epidemics of inflammatory diseases. Herein we aim to better understand the impact of a high-fat-high-sucrose diet on intestinal homeostasis in healthy conditions and the subsequent colitis risk. We investigated the early events and the potential reversibility of high caloric diet-induced damage in mice before experimental colitis. C57BL/6 mice were fed with a high-fat or high-fat high-sucrose or control diet before experimental colitis. In healthy mice, a high-fat high-sucrose diet induces a pre-IBD state characterized by gut microbiota dysbiosis with a total depletion of bacteria belonging to Barnesiella that is associated with subclinical endoscopic lesions. An overall down-regulation of the colonic transcriptome converged with broadly decreased immune cell populations in the mesenteric lymph nodes leading to the inability to respond to tissue injury. Such in-vivo effects on microbiome and transcriptome were partially restored when returning to normal chow. Long-term consumption of diet enriched in sucrose and fat predisposes mice to colitis. This enhanced risk is preceded by gut microbiota dysbiosis and transcriptional reprogramming of colonic genes related to IBD. Importantly, diet-induced transcriptome and microbiome disturbances are partially reversible after switching back to normal chow with persistent sequelae that may contribute to IBD predisposition in the general population.

3.
Sci Immunol ; 6(65): eabf7473, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739342

RESUMEN

Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)­, receptor-interacting protein kinase 1 (RIPK1)­, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell­derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell­derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.


Asunto(s)
Inflamación/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Intestinos/inmunología , Microbiota/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/inmunología , Animales , Péptidos Antimicrobianos/administración & dosificación , Péptidos Antimicrobianos/biosíntesis , Péptidos Antimicrobianos/farmacología , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Proteínas Inhibidoras de la Apoptosis/deficiencia , Proteínas Inhibidoras de la Apoptosis/genética , Intestinos/efectos de los fármacos , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/efectos de los fármacos , Células de Paneth/química , Células de Paneth/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/genética
4.
Gut ; 70(3): 485-498, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503845

RESUMEN

OBJECTIVE: The intestinal epithelium is a rapidly renewing tissue which plays central roles in nutrient uptake, barrier function and the prevention of intestinal inflammation. Control of epithelial differentiation is essential to these processes and is dependent on cell type-specific activity of transcription factors which bind to accessible chromatin. Here, we studied the role of SET Domain Bifurcated Histone Lysine Methyltransferase 1, also known as ESET (SETDB1), a histone H3K9 methyltransferase, in intestinal epithelial homeostasis and IBD. DESIGN: We investigated mice with constitutive and inducible intestinal epithelial deletion of Setdb1, studied the expression of SETDB1 in patients with IBD and mouse models of IBD, and investigated the abundance of SETDB1 variants in healthy individuals and patients with IBD. RESULTS: Deletion of intestinal epithelial Setdb1 in mice was associated with defects in intestinal epithelial differentiation, barrier disruption, inflammation and mortality. Mechanistic studies showed that loss of SETDB1 leads to de-silencing of endogenous retroviruses, DNA damage and intestinal epithelial cell death. Predicted loss-of-function variants in human SETDB1 were considerably less frequently observed than expected, consistent with a critical role of SETDB1 in human biology. While the vast majority of patients with IBD showed unimpaired mucosal SETDB1 expression, comparison of IBD and non-IBD exomes revealed over-representation of individual rare missense variants in SETDB1 in IBD, some of which are predicted to be associated with loss of function and may contribute to the pathogenesis of intestinal inflammation. CONCLUSION: SETDB1 plays an essential role in intestinal epithelial homeostasis. Future work is required to investigate whether rare variants in SETDB1 contribute to the pathogenesis of IBD.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Animales , Diferenciación Celular , Células Epiteliales/metabolismo , Femenino , Silenciador del Gen , Homeostasis/genética , Humanos , Mutación con Pérdida de Función , Masculino , Ratones
5.
Gastroenterology ; 157(5): 1310-1322.e13, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352002

RESUMEN

BACKGROUND & AIMS: Interferon lambda (IFNL) is expressed at high levels by intestinal epithelial cells (IECs) and mucosal immune cells in response to infection and inflammation. We investigated whether IFNL might contribute to pathogenesis of Crohn's disease (CD). METHODS: We obtained serum samples and terminal ileum biopsies from 47 patients with CD and 16 healthy individuals (controls). We measured levels of IFNL by enzyme-linked immunosorbent assay and immunohistochemistry and location of expression by confocal microscopy. Activation of IFNL signaling via STAT1 was measured in areas of no, mild, moderate, and severe inflammation and correlated with Paneth cell homeostasis and inflammation. IFNL expression and function were studied in wild-type mice and mice with intestinal epithelial cell-specific (ΔIEC) disruption or full-body disruption of specific genes (Mlkl-/-, Stat1ΔIEC, Casp8ΔIEC, Casp8ΔIECRipk3-/-, Casp8ΔIECTnfr-/-, Casp8ΔIECMlkl-/-, and Nod2-/- mice). Some mice were given tail vein injections of a vector encoding a secreted form of IFNL. Intestinal tissues were collected from mice and analyzed by immunohistochemistry and immunoblots. We generated 3-dimensional small intestinal organoids from mice and studied the effects of IFNL and inhibitors of STAT-signaling pathway. RESULTS: Patients with CD had significant increases in serum and ileal levels of IFNL compared with controls. Levels of IFNL were highest in ileum tissues with severe inflammation. High levels of IFNL associated with a reduced number of Paneth cells and increased cell death at the crypt bottom in inflamed ileum samples. Intestinal tissues from the ileum of wild-type mice injected with a vector expressing IFNL had reduced numbers of Paneth cells. IFNL-induced death of Paneth cells in mice did not occur via apoptosis, but required Mixed Lineage Kinase Domain Like (MLKL) and activation of Signal transducer and activator of transcription 1 (STAT1). In organoids, inhibitors of Janus kinase (JAK) signaling via STAT1 (glucocorticoids, tofacitinib, or filgotinib) reduced expression of proteins that mediate cell death and prevented Paneth cell death. CONCLUSIONS: Levels of IFNL are increased in serum and inflamed ileal tissues from patients with CD and associated with a loss of Paneth cells. Expression of a secreted form of IFNL in mice results in loss of Paneth cells from intestinal tissues, via STAT1 and MLKL, controlled by caspase 8. Strategies to reduce IFNL or block its effects might be developed for treatment of patients with CD affecting the terminal ileum.


Asunto(s)
Enfermedad de Crohn/metabolismo , Íleon/metabolismo , Interferones/metabolismo , Interleucinas/metabolismo , Células de Paneth/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Caspasa 8/genética , Caspasa 8/metabolismo , Muerte Celular , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Modelos Animales de Enfermedad , Humanos , Íleon/inmunología , Íleon/patología , Interferones/genética , Interleucinas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Células de Paneth/inmunología , Células de Paneth/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Transducción de Señal , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba
6.
Gut ; 68(1): 25-39, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29730603

RESUMEN

OBJECTIVE: Vedolizumab, a monoclonal antibody directed against the integrin heterodimer α4ß7, is approved for the treatment of Crohn's disease and ulcerative colitis. The efficacy of vedolizumab has been suggested to result from inhibition of intestinal T cell trafficking although human data to support this conclusion are scarce. We therefore performed a comprehensive analysis of vedolizumab-induced alterations in mucosal and systemic immunity in patients with inflammatory bowel disease (IBD), using anti-inflammatory therapy with the TNFα antibody infliximab as control. DESIGN: Immunophenotyping, immunohistochemistry, T cell receptor profiling and RNA sequencing were performed using blood and colonic biopsies from patients with IBD before and during treatment with vedolizumab (n=18) or, as control, the anti-TNFα antibody infliximab (n=20). Leucocyte trafficking in vivo was assessed using single photon emission computed tomography and endomicroscopy. RESULTS: Vedolizumab was not associated with alterations in the abundance or phenotype of lamina propria T cells and did not affect the mucosal T cell repertoire or leucocyte trafficking in vivo. Surprisingly, however, α4ß7 antibody treatment was associated with substantial effects on innate immunity including changes in macrophage populations and pronounced alterations in the expression of molecules involved in microbial sensing, chemoattraction and regulation of the innate effector response. These effects were specific to vedolizumab, not observed in response to the TNFα antibody infliximab, and associated with inhibition of intestinal inflammation. CONCLUSION: Our findings suggest that modulation of innate immunity contributes to the therapeutic efficacy of vedolizumab in IBD. TRIAL REGISTRATION NUMBER: NCT02694588.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Fármacos Gastrointestinales/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Adulto , Biopsia , Estudios de Casos y Controles , Femenino , Humanos , Inmunohistoquímica , Inmunofenotipificación , Infliximab/uso terapéutico , Integrinas/antagonistas & inhibidores , Masculino , Fenotipo , Estudios Prospectivos , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Tomografía Computarizada de Emisión de Fotón Único
7.
Commun Biol ; 1: 155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302399

RESUMEN

Kv7.1 (KCNQ1) coassembles with KCNE1 to generate the cardiac IKs -channel. Gain- and loss-of-function mutations in KCNQ1 are associated with cardiac arrhthymias, highlighting the importance of modulating IKs activity for cardiac function. Here, we report proteolysis of Kv7.1 as an irreversible posttranslational modification. The identification of two C-terminal fragments of Kv7.1 led us to identify an aspartate critical for the generation of one of the fragments and caspases as responsible for mediating proteolysis. Activating caspases reduces Kv7.1/KCNE1 currents, which is abrogated in cells expressing caspase-resistant channels. Enhanced cleavage of Kv7.1 can be detected for the LQT mutation G460S, which is located adjacent to the cleavage site, whereas a calmodulin-binding-deficient mutation impairs cleavage. Application of apoptotic stimuli or doxorubicin-induced cardiotoxicity provokes caspase-mediated cleavage of endogenous IKs in human cardiomyocytes. In summary, caspases are novel regulatory components of IKs channels that may have important implications for the molecular mechanism of doxorubicin-induced cardiotoxicity.

8.
Nat Med ; 22(5): 506-15, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27043494

RESUMEN

Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.


Asunto(s)
Calcineurina/metabolismo , Neoplasias Colorrectales/metabolismo , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Western Blotting , Proliferación Celular , Supervivencia Celular , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/mortalidad , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Trasplante de Microbiota Fecal , Citometría de Flujo , Microbioma Gastrointestinal/genética , Genes APC , Células HCT116 , Células HT29 , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Neoplasias Intestinales/microbiología , Intestinos/microbiología , Ratones , Células Madre Neoplásicas , Organoides , Pronóstico , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares
9.
Mol Endocrinol ; 27(4): 671-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23418396

RESUMEN

The frequent overexpression of the somatostatin receptors sst2 and sst5 in neuroendocrine tumors provides the molecular basis for therapeutic application of novel multireceptor somatostatin analogs. Although the phosphorylation of the carboxyl-terminal region of the sst2 receptor has been studied in detail, little is known about the agonist-induced regulation of the human sst5 receptor. Here, we have generated phosphosite-specific antibodies for the carboxyl-terminal threonines 333 (T333) and 347 (T347), which enabled us to selectively detect either the T333-phosphorylated or the T347-phosphorylated form of sst5. We show that agonist-mediated phosphorylation occurs at T333, whereas T347 is constitutively phosphorylated in the absence of agonist. We further demonstrate that the multireceptor somatostatin analog pasireotide and the sst5-selective ligand L-817,818 but not octreotide or KE108 were able to promote a detectable T333 phosphorylation. Interestingly, BIM-23268 was the only sst5 agonist that was able to stimulate T333 phosphorylation to the same extent as natural somatostatin. Agonist-induced T333 phosphorylation was dose-dependent and selectively mediated by G protein-coupled receptor kinase 2. Similar to that observed for the sst2 receptor, phosphorylation of sst5 occurred within seconds. However, unlike that seen for the sst2 receptor, dephosphorylation and recycling of sst5 were rapidly completed within minutes. We also identify protein phosphatase 1γ as G protein-coupled receptor phosphatase for the sst5 receptor. Together, we provide direct evidence for agonist-selective phosphorylation of carboxyl-terminal T333. In addition, we identify G protein-coupled receptor kinase 2-mediated phosphorylation and protein phosphatase 1γ-mediated dephosphorylation of T333 as key regulators of rapid internalization and recycling of the human sst5 receptor.


Asunto(s)
Fosfotreonina/metabolismo , Receptores de Somatostatina/metabolismo , Secuencia de Aminoácidos , Especificidad de Anticuerpos/efectos de los fármacos , Especificidad de Anticuerpos/inmunología , Biocatálisis/efectos de los fármacos , Endocitosis/efectos de los fármacos , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Toxinas Marinas , Datos de Secuencia Molecular , Oxazoles/farmacología , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 1/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/química
10.
Stroke ; 42(3): 783-91, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21293018

RESUMEN

BACKGROUND AND PURPOSE: Stroke is triggered by several risk factors, including influenza and other respiratory tract infections. However, it is unknown how and in which way influenza infection affects stroke outcome. METHODS: We infected mice intranasally with human influenza A (H1N1) virus and occluded the middle cerebral artery to induce ischemic strokes. Infarct volume and intracerebral hemorrhage were determined by histology. To evaluate the integrity of the blood-brain barrier and inflammation, we measured various cytokines in vivo and in vitro and performed immunohistochemistry of leukocyte markers, collagen IV, immunoglobulins, and matrix metalloproteinase-9. RESULTS: Influenza virus infection increased infarct size. Whereas changes in cardiovascular parameters did not explain this effect, we found evidence for an inflammatory mechanism. In influenza virus infection, the respiratory tract released cytokines into the blood, such as RANTES that induced macrophage inflammatory protein-2 and other inflammatory mediators in the ischemic brain. In infected mice, there was an increased number of neutrophils expressing the matrix metalloproteinase-9 in the ischemic brain. This was accompanied by severe disruption of the blood-brain barrier and an increased rate of intracerebral hemorrhages after tissue plasminogen activator treatment. To investigate the role of cytokines, we blocked cytokine release by using GTS-21, a selective agonist of the α7 nicotinic acetylcholine receptor. GTS-21 ameliorated ischemic brain damage and improved survival. CONCLUSIONS: Influenza virus infection triggers a cytokine cascade that aggravates ischemic brain damage and increases the risk of intracerebral hemorrhage after tissue plasminogen activator treatment. Blockade of cytokine production by α7 nicotinic acetylcholine receptor agonists is a novel therapeutic option to treat stroke in a proinflammatory context.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/complicaciones , Accidente Cerebrovascular/complicaciones , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/virología , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/metabolismo , Quimiocina CXCL2/antagonistas & inhibidores , Quimiocina CXCL2/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Inflamación/patología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/metabolismo , Gripe Humana/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Factores de Riesgo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...