Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463962

RESUMEN

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

3.
Brain Struct Funct ; 228(6): 1459-1478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37358662

RESUMEN

The temporo-basal region of the human brain is composed of the collateral, the occipito-temporal, and the rhinal sulci. We manually rated (using a novel protocol) the connections between rhinal/collateral (RS-CS), collateral/occipito-temporal (CS-OTS) and rhinal/occipito-temporal (RS-OTS) sulci, using the MRI of nearly 3400 individuals including around 1000 twins. We reported both the associations between sulcal polymorphisms as well with a wide range of demographics (e.g. age, sex, handedness). Finally, we also estimated the heritability, and the genetic correlation between sulcal connections. We reported the frequency of the sulcal connections in the general population, which were hemisphere dependent. We found a sexual dimorphism of the connections, especially marked in the right hemisphere, with a CS-OTS connection more frequent in females (approximately 35-40% versus 20-25% in males) and an RS-CS connection more common in males (approximately 40-45% versus 25-30% in females). We confirmed associations between sulcal connections and characteristics of incomplete hippocampal inversion (IHI). We estimated the broad sense heritability to be 0.28-0.45 for RS-CS and CS-OTS connections, with hints of dominant contribution for the RS-CS connection. The connections appeared to share some of their genetic causing factors as indicated by strong genetic correlations. Heritability appeared much smaller for the (rarer) RS-OTS connection.


Asunto(s)
Caracteres Sexuales , Lóbulo Temporal , Masculino , Femenino , Humanos , Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipocampo , Lateralidad Funcional/genética
4.
Sci Data ; 10(1): 195, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031232

RESUMEN

We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.


Asunto(s)
Desarrollo del Adolescente , Encéfalo , Adolescente , Niño , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estudios Longitudinales , Imagen por Resonancia Magnética , Queensland , Gemelos
5.
Nat Med ; 29(4): 936-949, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076741

RESUMEN

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Sueño-Vigilia , Niño , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Lipidómica , Calidad de Vida , Australia/epidemiología , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/complicaciones , ADN Helicasas , Proteínas Nucleares , Factores de Transcripción
6.
Twin Res Hum Genet ; 25(3): 115-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35856184

RESUMEN

In this prospective study of mental health, we examine the influence of three interrelated traits - perceived stress, rumination, and daytime sleepiness - and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9-14 years at baseline and 152 pairs aged 10-16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8-11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic-pituitary-adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.


Asunto(s)
Depresión , Trastornos de Somnolencia Excesiva , Adolescente , Ansiedad/genética , Ansiedad/psicología , Depresión/genética , Trastornos de Somnolencia Excesiva/psicología , Humanos , Estudios Prospectivos , Estrés Psicológico/genética , Estrés Psicológico/psicología
7.
Twin Res Hum Genet ; 25(3): 129-139, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35791873

RESUMEN

The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%-72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%-77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%-16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Hermanos , Gemelos , Adulto , Encéfalo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Gemelos/genética , Adulto Joven
8.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767757

RESUMEN

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Asunto(s)
Trastorno Autístico/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Trastorno Autístico/diagnóstico , Conducta , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Fenotipo , Filogenia , Especificidad de la Especie
9.
Psychol Sci ; 32(8): 1183-1197, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34323639

RESUMEN

On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.


Asunto(s)
Conectoma , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Gemelos
10.
Sleep Med ; 79: 134-144, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33524839

RESUMEN

BACKGROUND: Adolescence is a risk period for the development of mental illness, as well as a time for pronounced change in sleep behaviour. While prior studies, including several meta-analyses show a relationship between sleep and depressive symptoms, there were many inconsistences found in the literature. OBJECTIVE: To investigate the relationship between subjective sleep and depressive symptoms. METHODS: Following PRISMA guidelines, we conducted a literature search that yielded forty-nine recent studies (2014-2020) with adolescent samples aged 9 to 25-year-olds, and more than double the sample size of previous meta-analyses (N = 318,256). RESULTS: In a series of meta-analyses, we show that while several common categories of subjective sleep are associated with depressive symptoms in adolescents, the strength of this relationship varies. Measures of sleep perception: poor sleep quality (r = 0.41), insomnia (r = 0.37), sleep disturbances (r = 0.36), wake after sleep onset (r = 0.31), and daytime sleepiness (r = 0.30) correlated more strongly with depressive symptoms, than measures of sleep behaviour: sleep latency (r = 0.22), and sleep duration (r = -0.19). CONCLUSIONS: These findings suggest that in studies of depressive symptoms it may be important to assess an adolescent's perception about their sleep, in addition to their sleep/wake behaviours.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Adolescente , Niño , Depresión/epidemiología , Humanos , Polisomnografía , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Trastornos del Sueño-Vigilia/epidemiología , Adulto Joven
11.
Sleep Adv ; 2(1): zpab018, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37193570

RESUMEN

Study Objectives: To investigate the influence of genetic and environmental factors on sleep-wake behaviors across adolescence. Methods: Four hundred and ninety-five participants (aged 9-17; 55% females), including 93 monozygotic and 117 dizygotic twin pairs, and 75 unmatched twins, wore an accelerometry device and completed a sleep diary for 2 weeks. Results: Individual differences in sleep onset, wake time, and sleep midpoint were influenced by both additive genetic (44%-50% of total variance) and shared environmental (31%-42%) factors, with a predominant genetic influence for sleep duration (62%) and restorative sleep (43%). When stratified into younger (aged 9-14) and older (aged 16-17) subsamples, genetic sources were more prominent in older adolescents. The moderate correlation between sleep duration and midpoint (rP = -.43, rG = .54) was attributable to a common genetic source. Sleep-wake behaviors on school and nonschool nights were correlated (rP = .44-.72) and influenced by the same genetic and unique environmental factors. Genetic sources specific to night-type were also identified, for all behaviors except restorative sleep. Conclusions: There were strong genetic influences on sleep-wake phenotypes, particularly on sleep timing, in adolescence. Moreover, there may be common genetic influences underlying both sleep and circadian rhythms. The differences in sleep-wake behaviors on school and nonschool nights could be attributable to genetic factors involved in reactivity to environmental context.

12.
Hum Brain Mapp ; 41(14): 4062-4076, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32687259

RESUMEN

The recent availability of large-scale neuroimaging cohorts facilitates deeper characterisation of the relationship between phenotypic and brain architecture variation in humans. Here, we investigate the association (previously coined morphometricity) of a phenotype with all 652,283 vertex-wise measures of cortical and subcortical morphology in a large data set from the UK Biobank (UKB; N = 9,497 for discovery, N = 4,323 for replication) and the Human Connectome Project (N = 1,110). We used a linear mixed model with the brain measures of individuals fitted as random effects with covariance relationships estimated from the imaging data. We tested 167 behavioural, cognitive, psychiatric or lifestyle phenotypes and found significant morphometricity for 58 phenotypes (spanning substance use, blood assay results, education or income level, diet, depression, and cognition domains), 23 of which replicated in the UKB replication set or the HCP. We then extended the model for a bivariate analysis to estimate grey-matter correlation between phenotypes, which revealed that body size (i.e., height, weight, BMI, waist and hip circumference, body fat percentage) could account for a substantial proportion of the morphometricity (confirmed using a conditional analysis), providing possible insight into previous MRI case-control results for psychiatric disorders where case status is associated with body mass index. Our LMM framework also allowed to predict some of the associated phenotypes from the vertex-wise measures, in two independent samples. Finally, we demonstrated additional new applications of our approach (a) region of interest (ROI) analysis that retain the vertex-wise complexity; (b) comparison of the information retained by different MRI processings.


Asunto(s)
Tamaño Corporal/fisiología , Sustancia Gris/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Neuroimagen/métodos , Fenotipo , Factores de Edad , Anciano , Anciano de 80 o más Años , Conectoma , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores Sexuales
13.
Neuroimage ; 215: 116781, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278894

RESUMEN

The hippocampus is a brain region critical for learning and memory, and is also implicated in several neuropsychiatric disorders that show sex differences in prevalence, symptom expression, and mean age of onset. On average, males have larger hippocampal volumes than females, but findings are inconclusive after adjusting for overall brain size. Although the hippocampus is a heterogenous structure, few studies have focused on sex differences in the hippocampal subfields - with little consensus on whether there are regionally specific sex differences in the hippocampus after adjusting for brain size, or whether it is important to adjust for total hippocampal volume (HPV). Here, using two young adult cohorts from the Queensland Twin IMaging study (QTIM; N â€‹= â€‹727) and the Human Connectome Project (HCP; N â€‹= â€‹960), we examined differences between males and females in the volumes of 12 hippocampal subfields, extracted using FreeSurfer 6.0. After adjusting the subfield volumes for either HPV or brain size (brain segmentation volume (BSV)) using four controlling methods (allometric, covariate, residual and matching), we estimated the percentage difference of the sex effect (males versus females) and Cohen's d using hierarchical general linear models. Males had larger volumes compared to females in the parasubiculum (up to 6.04%; Cohen's d â€‹= â€‹0.46) and fimbria (up to 8.75%; d â€‹= â€‹0.54) after adjusting for HPV. These sex differences were robust across the two cohorts and multiple controlling methods, though within cohort effect sizes were larger for the matched approach, due to the smaller sub-sample. Additional sex effects were identified in the HCP cohort and combined (QTIM and HCP) sample (hippocampal fissure (up to 6.79%), presubiculum (up to 3.08%), and hippocampal tail (up to -0.23%)). In contrast, no sex differences were detected for the volume of the cornu ammonis (CA)2/3, CA4, Hippocampus-Amygdala Transition Area (HATA), or the granule cell layer of the dentate gyrus (GCDG). These findings show that, independent of differences in HPV, there are regionally specific sex differences in the hippocampus, which may be most prominent in the fimbria and parasubiculum. Further, given sex differences were less consistent across cohorts after controlling for BSV, adjusting for HPV rather than BSV may benefit future studies. This work may help in disentangling sex effects, and provide a better understanding of the implications of sex differences for behaviour and neuropsychiatric disorders.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/fisiología , Caracteres Sexuales , Adulto , Conectoma , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Gemelos , Adulto Joven
14.
Science ; 367(6484)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193296

RESUMEN

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.


Asunto(s)
Corteza Cerebral/anatomía & histología , Variación Genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Mapeo Encefálico , Cognición , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Tamaño de los Órganos/genética , Enfermedad de Parkinson/genética
15.
Neuroimage ; 212: 116691, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32126298

RESUMEN

It is well established that higher cognitive ability is associated with larger brain size. However, individual variation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, sufficient statistical power to detect small associations. This study investigates the association between three global (total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on two independent target samples of young twin adults with neuroimaging data, from Australia (N â€‹= â€‹1097) and the USA (N â€‹= â€‹723), and found that higher EA-PGS were significantly associated with larger global brain size measures, ICV and TSA (R2 â€‹= â€‹0.006 and 0.016 respectively, p â€‹< â€‹0.001) but not average thickness. At the regional level, we identified seven cortical regions-in the frontal and temporal lobes-that showed variation in surface area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Altogether, these findings advance our understanding of the neurobiology that underpins educational attainment and cognitive ability, providing focus points for future research.


Asunto(s)
Corteza Cerebral/anatomía & histología , Escolaridad , Éxito Académico , Adolescente , Adulto , Femenino , Humanos , Inteligencia/fisiología , Lenguaje , Imagen por Resonancia Magnética , Masculino , Memoria/fisiología , Herencia Multifactorial , Tamaño de los Órganos , Adulto Joven
16.
Neuroimage ; 203: 116206, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31539591

RESUMEN

Participant movement can deleteriously affect MR image quality. Further, for the visualization and segmentation of small anatomical structures, there is a need to improve image quality, specifically signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), by acquiring multiple anatomical scans consecutively. We aimed to ameliorate movement artefacts and increase SNR in a high-resolution turbo spin-echo (TSE) sequence acquired thrice using non-linear realignment in order to improve segmentation consistency of the hippocampus subfields. We assessed the method in 29 young healthy participants, 11 Motor Neuron Disease patients, and 11 age matched controls at 7T, and 24 healthy adolescents at 3T. Results show improved image segmentation of the hippocampus subfields when comparing template-based segmentations with individual segmentations with Dice overlaps N = 75; ps < 0.001 (Friedman's test) and higher sharpness ps < 0.001 in non-linearly realigned scans as compared to linearly, and arithmetically averaged scans.


Asunto(s)
Hipocampo/diagnóstico por imagen , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Anciano , Artefactos , Hipocampo/anatomía & histología , Hipocampo/patología , Humanos , Persona de Mediana Edad , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/patología , Reproducibilidad de los Resultados , Relación Señal-Ruido
17.
Brain Struct Funct ; 224(8): 2805-2821, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31428865

RESUMEN

Comparing estimates of the amount of genetic and environmental variance for different brain structures may elucidate differences in the genetic architecture or developmental constraints of individual brain structures. However, most studies compare estimates of relative genetic (heritability) and environmental variance in brain structure, which do not reflect differences in absolute variance between brain regions. Here we used a population sample of young adult twins and singleton siblings of twins (n = 791; M = 23 years, Queensland Twin IMaging study) to estimate the absolute genetic and environmental variance, standardised by the phenotypic mean, in the size of cortical, subcortical, and ventricular brain structures. Mean-standardised genetic variance differed widely across structures [23.5-fold range 0.52% (hippocampus) to 12.28% (lateral ventricles)], but the range of estimates within cortical, subcortical, or ventricular structures was more moderate (two to fivefold range). There was no association between mean-standardised and relative measures of genetic variance (i.e., heritability) in brain structure volumes. We found similar results in an independent sample (n = 1075, M = 29 years, Human Connectome Project). These findings open important new lines of enquiry: namely, understanding the bases of these variance patterns, and their implications regarding the genetic architecture, evolution, and development of the human brain.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Interacción Gen-Ambiente , Adulto , Conectoma , Femenino , Humanos , Masculino , Carácter Cuantitativo Heredable , Gemelos Dicigóticos , Gemelos Monocigóticos , Adulto Joven
18.
Hum Brain Mapp ; 40(12): 3488-3507, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31037793

RESUMEN

There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct analyses at the brain-wide scale. Here we present a simple method for heritability estimation on twins that replaces a variance component model-which requires iterative optimisation-with a (noniterative) linear regression model, by transforming data to squared twin-pair differences. We demonstrate that the method has comparable bias, mean squared error, false positive risk, and power to best practice maximum-likelihood-based methods, while requiring a small fraction of the computation time. Combined with permutation, we call this approach "Accelerated Permutation Inference for the ACE Model (APACE)" where ACE refers to the additive genetic (A) effects, and common (C), and unique (E) environmental influences on the trait. We show how the use of spatial statistics like cluster size can dramatically improve power, and illustrate the method on a heritability analysis of an fMRI working memory dataset.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Modelos Neurológicos , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto , Femenino , Interacción Gen-Ambiente , Humanos , Modelos Lineales , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
19.
Behav Brain Res ; 363: 103-108, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30703394

RESUMEN

Functional neuroimaging studies have identified brain regions associated with human taste perception, but only a few have investigated the associations with brain structure. Here, in this exploratory study, we examined the association between the volumes of 82 regions of interest (ROI) and the perceived intensities of sweet (a weighted mean rating of glucose, fructose, aspartame, neohesperidin dihydrochalcone) and bitter (propylthiouracil, quinine, caffeine) substances in a large Australian healthy cohort from the Queensland Twin IMaging (QTIM, n = 559) study and the perceived intensity of quinine in a large U.S. healthy cohort from the Human Connectome Project (HCP, n = 1101). In QTIM, the volumes of 3 cortical (right cuneus gyrus, left transverse temporal gyrus, right inferior temporal gyrus) and one subcortical structure (both left and right caudate) were associated with more than one taste stimulus (P < 0.05) and tended to be associated with both sweet and bitter tastes in the same direction, suggesting these ROIs were more broadly tuned for taste sensation. A further 11 ROIs were associated with a specific taste (sweetness: 4; propylthiouracil: 3; caffeine: 2; quinine: 2). In HCP, volumes of 5 ROIs were associated with quinine bitterness. The quinine-left entorhinal cortex association was found in both QTIM (r = -0.12, P = 3.7 × 10-3) and HCP (r = -0.06, P = 2.0 × 10-2). This study provides the first evidence that, even in healthy people, variation in brain structure is associated with taste intensity ratings, and provides new insights into the brain gustatory circuit.


Asunto(s)
Encéfalo/patología , Percepción del Gusto/fisiología , Gusto/fisiología , Adulto , Australia , Agentes Aversivos/metabolismo , Cafeína , Conectoma , Femenino , Humanos , Masculino , Propiltiouracilo , Quinina , Sacarosa , Edulcorantes/metabolismo
20.
Cereb Cortex ; 29(3): 952-962, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29377989

RESUMEN

Quantifying the genetic architecture of the cerebral cortex is necessary for understanding disease and changes to the brain across the lifespan. Prior work shows that both surface area (SA) and cortical thickness (CT) are heritable. However, we do not yet understand the extent to which region-specific genetic factors (i.e., independent of global effects) play a dominant role in the regional patterning or inter-regional associations across the cortex. Using a population sample of young adult twins (N = 923), we show that the heritability of SA and CT varies widely across regions, generally independent of measurement error. When global effects are controlled for, we detected a complex pattern of genetically mediated clusters of inter-regional associations, which varied between hemispheres. There were generally weak associations between the SA of different regions, except within the occipital lobe, whereas CT was positively correlated within lobar divisions and negatively correlated across lobes, mostly due to genetic covariation. These findings were replicated in an independent sample of twins and siblings (N = 698) from the Human Connectome Project. The different genetic contributions to SA and CT across regions reveal the value of quantifying sources of covariation to appreciate the genetic complexity of cortical structures.


Asunto(s)
Corteza Cerebral/anatomía & histología , Interacción Gen-Ambiente , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...