Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(3): 159-164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38207122

RESUMEN

Efferocytosis is a process whereby apoptotic cells are cleared to maintain tissue homeostasis. In the lungs, efferocytosis has been implicated in several acute and chronic inflammatory diseases. A long-standing method to study efferocytosis in vivo is to instill apoptotic cells into the lungs to evaluate macrophage uptake. However, this approach provides nonphysiologic levels of cells to the airspaces, where there is preferential access to the alveolar macrophages. To circumvent this limitation, we developed a new method to study efferocytosis of damaged alveolar type 2 (AT2) epithelial cells in vivo. A reporter mouse that expresses TdTomato in AT2 epithelial cells was injured with influenza (strain PR8) to induce apoptosis of AT2 cells. We were able to identify macrophages that acquire red fluorescence after influenza injury, indicating efferocytosis of AT2 cells. Furthermore, evaluation of macrophage populations led to the surprising finding that lung interstitial macrophages were the primary efferocyte in vivo. In summary, we present a novel finding that the interstitial macrophage, not the alveolar macrophage, primarily mediates clearance of AT2 cells in the lungs after influenza infection. Our method of studying efferocytosis provides a more physiologic approach in evaluating the spatiotemporal dynamics of apoptotic cell clearance in vivo and opens new avenues to study the mechanisms by which efferocytosis regulates inflammation.


Asunto(s)
Eferocitosis , Gripe Humana , Proteína Fluorescente Roja , Animales , Ratones , Humanos , Macrófagos , Epitelio
2.
Nat Commun ; 14(1): 5814, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726288

RESUMEN

Epithelial plasticity has been suggested in lungs of mice following genetic depletion of stem cells but is of unknown physiological relevance. Viral infection and chronic lung disease share similar pathological features of stem cell loss in alveoli, basal cell (BC) hyperplasia in small airways, and innate immune activation, that contribute to epithelial remodeling and loss of lung function. We show that a subset of distal airway secretory cells, intralobar serous (IS) cells, are activated to assume BC fates following influenza virus infection. Injury-induced hyperplastic BC (hBC) differ from pre-existing BC by high expression of IL-22Ra1 and undergo IL-22-dependent expansion for colonization of injured alveoli. Resolution of virus-elicited inflammation results in BC to IS re-differentiation in repopulated alveoli, and increased local expression of protective antimicrobial factors, but fails to restore normal alveolar epithelium responsible for gas exchange.


Asunto(s)
Células Epiteliales , Alveolos Pulmonares , Animales , Ratones , Diferenciación Celular , Hiperplasia , Inmunidad Innata
3.
bioRxiv ; 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577539

RESUMEN

Background: Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods: We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results: ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions: Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.

4.
Am J Physiol Cell Physiol ; 325(2): C483-C495, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458437

RESUMEN

Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar Idiopática , Humanos , Anciano , Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Senescencia Celular , Envejecimiento , Células Madre/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo
5.
Elife ; 122023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314162

RESUMEN

Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors. We identified three AEC2 subsets based on their gene signatures. Subset AEC2-1 mainly exist in uninjured lungs, while subsets AEC2-2 and AEC2-3 emerged in injured lungs and increased with aging. Functionally, AEC2 subsets are correlated with progenitor cell renewal. Aging enhanced the expression of the genes related to inflammation, stress responses, senescence, and apoptosis. Interestingly, lung injury increased aging-related gene expression in AEC2s even in young mice. The synergistic effects of aging and injury contributed to impaired AEC2 recovery in aged mouse lungs after injury. In addition, we also identified three subsets of AEC2s from human lungs that formed three similar subsets to mouse AEC2s. IPF AEC2s showed a similar genomic signature to AEC2 subsets from bleomycin-injured old mouse lungs. Taken together, we identified synergistic effects of aging and AEC2 injury in transcriptomic and functional analyses that promoted fibrosis. This study provides new insights into the interactions between aging and lung injury with interesting overlap with diseased IPF AEC2 cells.


Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Pulmón/patología , Envejecimiento , Bleomicina/toxicidad
7.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36454643

RESUMEN

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Transcriptoma , Células Epiteliales Alveolares/metabolismo , Pulmón/patología , Alveolos Pulmonares/patología
8.
Am J Respir Cell Mol Biol ; 67(6): 623-631, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036918

RESUMEN

The epithelium lining airspaces of the human lung is maintained by regional stem cells, including basal cells of pseudostratified airways and alveolar type 2 (AT2) pneumocytes of the gas-exchange region. Despite effective techniques for long-term preservation of airway basal cells, procedures for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single-cell transcriptomic analysis were used to compare cells recovered from cryobanked tissue with those of freshly dissociated tissue. AT2 cells within single-cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HT II-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single-cell transcriptome and their capacity for in vitro organoid formation in three-dimensional cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype and is ideally suited for the creation of an easily accessible tissue resource for the research community.


Asunto(s)
Células Epiteliales , Pulmón , Humanos , Ratones , Animales , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales Alveolares/metabolismo , Fenotipo
9.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35980387

RESUMEN

Progressive tissue fibrosis, including idiopathic pulmonary fibrosis (IPF), is characterized by excessive recruitment of fibroblasts to sites of tissue injury and unremitting extracellular matrix deposition associated with severe morbidity and mortality. However, the molecular mechanisms that control progressive IPF have yet to be fully determined. Previous studies suggested that invasive fibroblasts drive disease progression in IPF. Here, we report profiling of invasive and noninvasive fibroblasts from IPF patients and healthy donors. Pathway analysis revealed that the activated signatures of the invasive fibroblasts, the top of which was ERBB2 (HER2), showed great similarities to those of metastatic lung adenocarcinoma cancer cells. Activation of HER2 in normal lung fibroblasts led to a more invasive genetic program and worsened fibroblast invasion and lung fibrosis, while antagonizing HER2 signaling blunted fibroblast invasion and ameliorated lung fibrosis. These findings suggest that HER2 signaling may be a key driver of fibroblast invasion and serve as an attractive target for therapeutic intervention in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Neoplasias/patología
10.
J Pathol ; 257(4): 494-500, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35608561

RESUMEN

The human lung is a relatively quiescent organ in the normal healthy state but contains stem/progenitor cells that contribute to normal tissue maintenance and either repair or remodeling in response to injury and disease. Maintenance or repair lead to proper restoration of functional lung tissue and maintenance of physiological functions, with remodeling resulting in altered structure and function that is typically associated with disease. Knowledge of cell types contributing to lung tissue maintenance and repair/remodeling have largely relied on mouse models of injury-repair and lineage tracing of local progenitors. Therefore, many of the functional alterations underlying remodeling in human lung disease have remained poorly defined. However, the advent of advanced genomics approaches to define the molecular phenotype of lung cells at single-cell resolution has paved the way for rapid advances in our understanding of cell types present within the normal human lung and changes that accompany disease. Here we summarize recent advances in our understanding of disease-related changes in the molecular phenotype of human lung epithelium that have emerged from single-cell transcriptomic studies. We focus attention on emerging concepts of epithelial transitional states that characterize the pathological remodeling that accompanies chronic lung diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, cystic fibrosis, and asthma. Concepts arising from these studies are actively evolving and require corroborative studies to improve our understanding of disease mechanisms. Whenever possible, we highlight opportunities for providing a unified nomenclature in this rapidly advancing field of research. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Animales , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Enfermedades Pulmonares/patología , Ratones , Enfermedad Pulmonar Obstructiva Crónica/patología , Transcriptoma
11.
Front Immunol ; 13: 790043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185885

RESUMEN

Diffuse alveolar hemorrhage (DAH), although rare, is a life-threatening complication of systemic lupus erythematosus (SLE). Little is known about the pathophysiology of DAH in humans, although increasingly neutrophils, NETosis and inflammatory monocytes have been shown to play an important role in the pristane-induced model of SLE which develops lung hemorrhage and recapitulates many of the pathologic features of human DAH. Using this experimental model, we asked whether endoplasmic reticulum (ER) stress played a role in driving the pathology of pulmonary hemorrhage and what role infiltrating neutrophils had in this process. Analysis of lung tissue from pristane-treated mice showed genes associated with ER stress and NETosis were increased in a time-dependent manner and reflected the timing of CD11b+Ly6G+ neutrophil accumulation in the lung. Using precision cut lung slices from untreated mice we observed that neutrophils isolated from the peritoneal cavity of pristane-treated mice could directly induce the expression of genes associated with ER stress, namely Chop and Bip. Mice which had myeloid-specific deletion of PAD4 were generated and treated with pristane to assess the involvement of PAD4 and PAD4-dependent NET formation in pristane-induced lung inflammation. Specific deletion of PAD4 in myeloid cells resulted in decreased expression of ER stress genes in the pristane model, with accompanying reduction in IFN-driven genes and pathology. Lastly, coculture experiments of human neutrophils and human lung epithelial cell line (BEAS-2b) showed neutrophils from SLE patients induced significantly more ER stress and interferon-stimulated genes in epithelial cells compared to healthy control neutrophils. These results support a pathogenic role of neutrophils and NETs in lung injury during pristane-induced DAH through the induction of ER stress response and suggest that overactivation of neutrophils in SLE and NETosis may underlie development of DAH.


Asunto(s)
Células Epiteliales/inmunología , Trampas Extracelulares/inmunología , Hemorragia/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Alveolos Pulmonares/inmunología , Animales , Modelos Animales de Enfermedad , Células Epiteliales/patología , Femenino , Hemorragia/patología , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Ratones Endogámicos C57BL , Neutrófilos/patología , Neumonía/etiología , Neumonía/patología , Alveolos Pulmonares/patología , Terpenos/toxicidad
12.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086840

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory system can progress to a multisystemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named senescence-associated secretory phenotype (SASP). We investigated whether coronavirus disease 2019 (COVID-19) is associated with cellular senescence and SASP. METHODS: Autopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID-19 controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients. RESULTS: SARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed angiotensin-converting enzyme 2 and exhibited increased senescence (p16INK4A and SenTraGor positivity) and interleukin (IL)-1ß and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGor), DNA damage (γ-H2AX) and increased cytokine (IL-1ß, IL-6, CXCL8) and apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extrapulmonary sites (kidney and liver) of a COVID-19 patient. CONCLUSIONS: We demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Senescencia Celular , Citocinas/metabolismo , Humanos , Inflamación , Interleucina-6 , Pulmón/metabolismo , Mutagénesis , Fenotipo
13.
Am J Transplant ; 22(2): 565-573, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34464505

RESUMEN

Despite the common detection of non-donor specific anti-HLA antibodies (non-DSAs) after lung transplantation, their clinical significance remains unclear. In this retrospective single-center cohort study of 325 lung transplant recipients, we evaluated the association between donor-specific HLA antibodies (DSAs) and non-DSAs with subsequent CLAD development. DSAs were detected in 30% of recipients and were associated with increased CLAD risk, with higher HRs for both de novo and high MFI (>5000) DSAs. Non-DSAs were detected in 56% of recipients, and 85% of DSA positive tests had concurrent non-DSAs. In general, non-DSAs did not increase CLAD risk in multivariable models accounting for DSAs. However, non-DSAs in conjunction with high BAL CXCL9 levels were associated with increased CLAD risk. Multivariable proportional hazards models demonstrate the importance of the HLA antibody-CXCL9 interaction: CLAD risk increases when HLA antibodies (both DSAs and non-DSAs) are detected in conjunction with high CXCL9. Conversely, CLAD risk is not increased when HLA antibodies are detected with low CXCL9. This study supports the potential utility of BAL CXCL9 measurement as a biomarker to risk stratify HLA antibodies for future CLAD. The ability to discriminate between high versus low-risk HLA antibodies may improve management by allowing for guided treatment decisions.


Asunto(s)
Antígenos HLA , Trasplante de Pulmón , Aloinjertos , Biomarcadores , Quimiocina CXCL9 , Estudios de Cohortes , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Supervivencia de Injerto , Humanos , Isoanticuerpos , Trasplante de Pulmón/efectos adversos , Pronóstico , Estudios Retrospectivos , Donantes de Tejidos
14.
Stem Cells Transl Med ; 10(12): 1696-1713, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546001

RESUMEN

Chronic lung disease has been attributed to stem cell aging and/or exhaustion. We investigated these mechanisms using mouse and human tracheobronchial tissue-specific stem cells (TSC). In mouse, chromatin labeling and flow cytometry demonstrated that naphthalene (NA) injury activated a subset of TSC. These activated TSC continued to proliferate after the epithelium was repaired and a clone study demonstrated that ~96% of activated TSC underwent terminal differentiation. Despite TSC attrition, epithelial repair after a second NA injury was normal. The second injury accelerated proliferation of previously activated TSC and a nucleotide-label retention study indicated that the second injury recruited TSC that were quiescent during the first injury. These mouse studies indicate that (a) injury causes selective activation of the TSC pool; (b) activated TSC are predisposed to further proliferation; and (c) the activated state leads to terminal differentiation. In human TSC, repeated proliferation also led to terminal differentiation and depleted the TSC pool. A clone study identified long- and short-lived TSC and showed that short-lived TSC clones had significantly shorter telomeres than their long-lived counterparts. The TSC pool was significantly depleted in dyskeratosis congenita donors, who harbor mutations in telomere biology genes. The remaining TSC had short telomeres and short lifespans. Collectively, the mouse and human studies support a model in which epithelial injury increases the biological age of the responding TSC. When applied to chronic lung disease, this model suggests that repeated injury accelerates the biological aging process resulting in abnormal repair and disease initiation.


Asunto(s)
Enfermedades Pulmonares , Lesiones de Repetición , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Células Madre
15.
iScience ; 24(6): 102551, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34151224

RESUMEN

Pulmonary mesenchymal cells are critical players in both the mouse and human during lung development and disease states. They are increasingly recognized as highly heterogeneous, but there is no consensus on subpopulations or discriminative markers for each subtype. We completed scRNA-seq analysis of mesenchymal cells from the embryonic, postnatal, adult and aged fibrotic lungs of mice and humans. We consistently identified and delineated the transcriptome of lipofibroblasts, myofibroblasts, smooth muscle cells, pericytes, mesothelial cells, and a novel population characterized by Ebf1 expression. Subtype selective transcription factors and putative divergence of the clusters during development were described. Comparative analysis revealed orthologous subpopulations with conserved transcriptomic signatures in murine and human lung mesenchymal cells. All mesenchymal subpopulations contributed to matrix gene expression in fibrosis. This analysis would enhance our understanding of mesenchymal cell heterogeneity in lung development, homeostasis and fibrotic disease conditions.

16.
Nat Med ; 27(5): 806-814, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958799

RESUMEN

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/patología , Células Epiteliales/citología , Pulmón/patología , Mucosa Respiratoria/patología , Diferenciación Celular/genética , Cilios/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/patología , Perfilación de la Expresión Génica , Humanos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
17.
Cell Rep ; 35(5): 109055, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905739

RESUMEN

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Asunto(s)
Células Epiteliales Alveolares/virología , Tratamiento Farmacológico de COVID-19 , COVID-19/patología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adulto , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , COVID-19/virología , Preescolar , Descubrimiento de Drogas/métodos , Células Epiteliales/virología , Epitelio/metabolismo , Epitelio/virología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Cultivo Primario de Células , Mucosa Respiratoria/virología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
19.
Am J Respir Cell Mol Biol ; 65(1): 22-29, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33625958

RESUMEN

The National Heart, Lung, and Blood Institute of the National Institutes of Health, together with the Longfonds BREATH consortium, convened a working group to review the field of lung regeneration and suggest avenues for future research. The meeting took place on May 22, 2019, at the American Thoracic Society 2019 conference in Dallas, Texas, United States, and brought together investigators studying lung development, adult stem-cell biology, induced pluripotent stem cells, biomaterials, and respiratory disease. The purpose of the working group was 1) to examine the present status of basic science approaches to tackling lung disease and promoting lung regeneration in patients and 2) to determine priorities for future research in the field.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Pulmonares , Pulmón/fisiología , Regeneración , Mucosa Respiratoria/fisiología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Congresos como Asunto , Educación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/terapia , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
20.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321047

RESUMEN

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...