Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 14(1): 140, 2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34147122

RESUMEN

BACKGROUND: The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. RESULTS: Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made ß-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. CONCLUSION: The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as ß-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins.

2.
Plant Sci ; 302: 110693, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288007

RESUMEN

Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of ß-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.


Asunto(s)
Grano Comestible/metabolismo , Endospermo/metabolismo , Genes de Plantas/genética , Mananos/biosíntesis , Triticum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Mananos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana , Triticum/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(2): 522-527, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30584101

RESUMEN

Heteromannan (HM) is one of the most ancient cell wall polymers in the plant kingdom, consisting of ß-(1-4)-linked backbones of glucose (Glc) and mannose (Man) units. Despite the widespread distribution of HM polysaccharides, their biosynthesis remains mechanistically unclear. HM is elongated by glycosyltransferases (GTs) from the cellulose synthase-like A (CSLA) family. MANNAN-SYNTHESIS RELATED (MSR) putative GTs have also been implicated in (gluco)mannan synthesis, but their roles have been difficult to decipher in planta and in vitro. To further characterize the products of the HM synthases and accessory proteins, we chose a synthetic biology approach to synthesize plant HM in yeast. The expression of a CSLA protein in Pichia pastoris led to the abundant production of plant HM: up to 30% of glycans in the yeast cell wall. Based on sequential chemical and enzymatic extractions, followed by detailed structural analyses, the newly produced HM polymers were unbranched and could be larger than 270 kDa. Using CSLAs from different species, we programmed yeast cells to produce an HM backbone composed exclusively of Man or also incorporating Glc. We demonstrate that specific MSR cofactors were indispensable for mannan synthase activity of a coffee CSLA or modulated a functional CSLA enzyme to produce glucomannan instead of mannan. Therefore, this powerful platform yields functional insight into the molecular machinery required for HM biosynthesis in plants.


Asunto(s)
Coffea , Mananos , Pichia , Proteínas de Plantas , Coffea/genética , Coffea/metabolismo , Mananos/biosíntesis , Mananos/genética , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
4.
Sci Adv ; 3(7): e1700006, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28706991

RESUMEN

The rates of mRNA synthesis and decay determine the mRNA expression level. The two processes are under coordinated control, which makes the measurements of these rates challenging, as evidenced by the low correlation among the methods of measurement of RNA half-lives. We developed a minimally invasive method, multiplexed gene control, to shut off expression of genes with controllable synthetic promoters. The method was validated by measuring the ratios of the nascent to mature mRNA molecules and by measuring the half-life with endogenous promoters that can be controlled naturally or through inserting short sequences that impart repressibility. The measured mRNA half-lives correlated highly with those obtained with the metabolic pulse-labeling method in yeast. However, mRNA degradation was considerably faster in comparison to previous estimates, with a median half-life of around 2 min. The half-life permits the estimation of promoter-dependent and promoter-independent transcription rates. The dynamical range of the promoter-independent transcription rates was larger than that of the mRNA half-lives. The rapid mRNA turnover and the broad adjustability of promoter-independent transcription rates are expected to have a major impact on stochastic gene expression and gene network behavior.


Asunto(s)
Bioensayo/métodos , Regulación de la Expresión Génica , Estabilidad del ARN , ARN Mensajero/genética , Expresión Génica , Genes Reporteros , Semivida , Cinética , Modelos Biológicos , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...