Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498885

RESUMEN

The adverse impact of common diseases like diabetes mellitus and acute hyperglycemia on morbidity and mortality from myocardial infarction (MI) has been well documented over the past years of research. In the clinical setting, the relationship between blood glucose and mortality appears linear, with amplifying risk associated with increasing blood glucose levels. Further, this seems to be independent of a diagnosis of diabetes. In the experimental setting, various comorbidities seem to impact ischemic and pharmacological conditioning strategies, protecting the heart against ischemia and reperfusion injury. In this translational experimental approach from bedside to bench, we set out to determine whether acute and/or prolonged hyperglycemia have an influence on the protective effect of transferred human RIPC-plasma and, therefore, might obstruct translation into the clinical setting. Control and RIPC plasma of young healthy men were transferred to isolated hearts of young male Wistar rats in vitro. Plasma was administered before global ischemia under either short hyperglycemic (HGs Con, HGs RIPC) conditions, prolonged hyperglycemia (HGl Con, HGl RIPC), or under normoglycemia (Con, RIPC). Infarct sizes were determined by TTC staining. Control hearts showed an infarct size of 55 ± 7%. Preconditioning with transferred RIPC plasma under normoglycemia significantly reduced infarct size to 25 ± 4% (p < 0.05 vs. Con). Under acute hyperglycemia, control hearts showed an infarct size of 63 ± 5%. Applying RIPC plasma under short hyperglycemic conditions led to a significant infarct size reduction of 41 ± 4% (p < 0.05 vs. HGs Con). However, the cardioprotective effect of RIPC plasma under normoglycemia was significantly stronger compared with acute hyperglycemic conditions (RIPC vs. HGs RIPC; p < 0.05). Prolonged hyperglycemia (HGl RIPC) completely abolished the cardioprotective effect of RIPC plasma (infarct size 60 ± 7%; p < 0.05 vs. HGl Con; HGl Con 59 ± 5%).


Asunto(s)
Hiperglucemia , Precondicionamiento Isquémico Miocárdico , Precondicionamiento Isquémico , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratas , Animales , Masculino , Humanos , Daño por Reperfusión Miocárdica/prevención & control , Glucemia , Ratas Wistar , Infarto del Miocardio/prevención & control , Hiperglucemia/complicaciones
2.
J Clin Med ; 11(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35268540

RESUMEN

The cardioprotective effect of remote ischemic preconditioning (RIPC) is well detectable in experimental studies but not in clinical trials. Propofol, a commonly used sedative, is discussed to negatively influence the release of humoral factors after RIPC. Further, results from experimental and clinical trials suggest various comorbidities interact with inducible cardioprotective properties of RIPC. In the present study, we went back from bedside to bench to investigate, in male patients undergoing CABG surgery, whether (1) humoral factors are released after RIPC during propofol-free anesthesia and/or (2) DM interacts with plasma factor release. Blood samples were taken from male patients with and without DM undergoing CABG surgery before (control) and after RIPC (RIPC). To investigate the release of cardioprotective humoral factors into the plasma, isolated perfused hearts of young rats (n = 5 per group) were used as a bioassay. The hearts were perfused with patients' plasma without (Con) and with RIPC (RIPC) for 10 min (1% of coronary flow) before global ischemia and reperfusion. In additional groups, the plasma of patients with DM was administered (Con DM, RIPC DM). Infarct size was determined by TTC staining. Propofol-free RIPC plasma of male patients without DM showed an infarct size of 59 ± 5% compared to 61 ± 13% with Con plasma (p = 0.973). Infarct sizes from patients with DM showed similar results (RIPC DM: 55 ± 3% vs. Con DM: 56 ± 4%; p = 0.995). The release of humoral factors into the blood after RIPC in patients receiving propofol-free anesthesia undergoing CABG surgery did not show any cardioprotective properties independent of a pre-existing diabetes mellitus.

3.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830353

RESUMEN

The osmodiuretic agent Mannitol exerts cardioprotection against ischemia and reperfusion (I/R) injury when applied as a pre- and/or postconditioning stimulus. Previously, we demonstrated that these properties are mediated via the activation of mitochondrial ATP-sensitive potassium (mKATP) channels. However, considering Mannitol remains in the extracellular compartment, the question arises as to which receptor and intracellular signaling cascades are involved in myocardial protection by the osmodiuretic substance. Protein kinase B (Akt) and G (PKG), as part of the reperfusion injury salvage kinase (RISK) and/or endothelial nitric oxide (eNOS)/PKG pathway, are two well-investigated intracellular targets conferring myocardial protection upstream of mitochondrial potassium channels. Adenosine receptor subtypes have been shown to trigger different cardioprotective pathways, for example, the reperfusion injury. Further, Mannitol induces an increased activation of the adenosine 1 receptor (A1R) in renal cells conferring its nephroprotective properties. Therefore, we investigated whether (1) Akt and PKG are possible signaling targets involved in Mannitol-induced conditioning upstream of the mKATP channel and/or whether (2) cardioprotection by Mannitol is mediated via activation of the A1R. All experiments were performed on male Wistar rats in vitro employing the Langendorff isolated heart perfusion technique with infarct size determination as the primary endpoint. To unravel possible protein kinase activation, Mannitol was applied in combination with the Akt (MK2206) or PKG (KT5823) inhibitor. In further groups, an A1R blocker (DPCPX) was given with or without Mannitol. Preconditioning with Mannitol (Man) significantly reduced the infarct size compared to the control group. Co-administration of the A1R blocker DPXPC fully abolished myocardial protection of Mannitol. Interestingly and in contrast to the initial hypothesis, neither administration of the Akt nor the PKG blocker had any impact on the cardioprotective properties of Mannitol-induced preconditioning. These results are quite unexpected and show that the protein kinases Akt and PKG-as possible targets of known protective signaling cascades-are not involved in Mannitol-induced preconditioning. However, the cardioprotective effects of Mannitol are mediated via the A1R.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/genética , Manitol/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Receptor de Adenosina A1/genética , Daño por Reperfusión/tratamiento farmacológico , Animales , Carbazoles/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Corazón/efectos de los fármacos , Corazón/fisiopatología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Precondicionamiento Isquémico Miocárdico , Canales KATP/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa de Tipo III/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Receptor de Adenosina A1/efectos de los fármacos , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Xantinas/farmacología
4.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445586

RESUMEN

Remote ischemic preconditioning (RIPC) protects hearts from ischemia-reperfusion (I/R) injury in experimental studies; however, clinical RIPC trials were unsatisfactory. This discrepancy could be caused by a loss of cardioprotection due to comorbidities in patients, including diabetes mellitus (DM) and hyperglycemia (HG). RIPC is discussed to confer protective properties by release of different humoral factors activating cardioprotective signaling cascades. Therefore, we investigated whether DM type 1 and/or HG (1) inhibit the release of humoral factors after RIPC and/or (2) block the cardioprotective effect directly at the myocardium. Experiments were performed on male Wistar rats. Animals in part 1 of the study were either healthy normoglycemic (NG), type 1 diabetic (DM1), or hyperglycemic (HG). RIPC was implemented by four cycles of 5 min bilateral hind-limb ischemia/reperfusion. Control (Con) animals were not treated. Blood plasma taken in vivo was further investigated in isolated rat hearts in vitro. Plasma from diseased animals (DM1 or HG) was administered onto healthy (NG) hearts for 10 min before 33 min of global ischemia and 60 min of reperfusion. Part 2 of the study was performed vice versa-plasma taken in vivo, with or without RIPC, from healthy rats was transferred to DM1 and HG hearts in vitro. Infarct size was determined by TTC staining. Part 1: RIPC plasma from NG (NG Con: 49 ± 8% vs. NG RIPC 29 ± 6%; p < 0.05) and DM1 animals (DM1 Con: 47 ± 7% vs. DM1 RIPC: 38 ± 7%; p < 0.05) reduced infarct size. Interestingly, transfer of HG plasma showed comparable infarct sizes independent of prior treatment (HG Con: 34 ± 9% vs. HG RIPC 35 ± 9%; ns). Part 2: No infarct size reduction was detectable when transferring RIPC plasma from healthy rats to DM1 (DM1 Con: 54 ± 13% vs. DM1 RIPC 53 ± 10%; ns) or HG hearts (HG Con: 60 ± 16% vs. HG RIPC 53 ± 14%; ns). These results suggest that: (1) RIPC under NG and DM1 induces the release of humoral factors with cardioprotective impact, (2) HG plasma might own cardioprotective properties, and (3) RIPC does not confer cardioprotection in DM1 and HG myocardium.


Asunto(s)
Cardiotónicos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Hiperglucemia/complicaciones , Inmunidad Humoral , Precondicionamiento Isquémico Miocárdico/métodos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Ratas , Ratas Wistar , Transducción de Señal
5.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926009

RESUMEN

Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3-10 µM) for 10 min at the onset of reperfusion, in order to investigate a concentration-response relationship. In the second set of experiments (2), 0.3 µM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.


Asunto(s)
Ciclosporina/farmacología , Hiperglucemia/tratamiento farmacológico , Simendán/farmacología , Animales , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiología , Hiperglucemia/complicaciones , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Ratas , Ratas Wistar
6.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673646

RESUMEN

Cardiac preconditioning (PC) and postconditioning (PoC) are powerful measures against the consequences of myocardial ischemia and reperfusion (I/R) injury. Mannitol-a hyperosmolar solution-is clinically used for treatment of intracranial and intraocular pressure or promotion of diuresis in renal failure. Next to these clinical indications, different organ-protective properties-e.g., perioperative neuroprotection-are described. However, whether Mannitol also confers cardioprotection via a pre- and/or postconditioning stimulus, possibly reducing consequences of I/R injury, remains to be seen. Therefore, in the present study we investigated whether (1) Mannitol-induced pre- and/or postconditioning induces myocardial infarct size reduction and (2) activation of mitochondrial ATP-sensitive potassium (mKATP) channels is involved in cardioprotection by Mannitol. Experiments were performed on isolated hearts of male Wistar rats via a pressure controlled Langendorff system, randomized into 7 groups. Each heart underwent 33 min of global ischemia and 60 min of reperfusion. Control hearts (Con) received Krebs-Henseleit buffer as vehicle only. Pre- and postconditioning was achieved by administration of 11 mmol/L Mannitol for 10 min before ischemia (Man-PC) or immediately at the onset of reperfusion (Man-PoC), respectively. In further groups, the mKATP channel blocker 5HD, was applied with and without Mannitol, to determine the potential underlying cardioprotective mechanisms. Primary endpoint was infarct size, determined by triphenyltetrazolium chloride staining. Mannitol significantly reduced infarct size both as a pre- (Man-PC) and postconditioning (Man-PoC) stimulus compared to control hearts (Man-PC: 31 ± 4%; Man-PoC: 35 ± 6%, each p < 0.05 vs. Con: 57 ± 9%). The mKATP channel inhibitor completely abrogated the cardioprotective effect of Mannitol-induced pre- (5HD-PC-Man-PC: 59 ± 8%, p < 0.05 vs. Man-PC) and postconditioning (5HD-PoC-Man-PoC: 59 ± 10% vs. p < 0.05 Man-PoC). Infarct size was not influenced by 5HD itself (5HD-PC: 60 ± 14%; 5HD-PoC: 54 ± 14%, each ns vs. Con). This study demonstrates that Mannitol (1) induces myocardial pre- and postconditioning and (2) confers cardioprotection via activation of mKATP channels.


Asunto(s)
Cardiotónicos , Precondicionamiento Isquémico Miocárdico , Manitol , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Canales de Potasio , Animales , Masculino , Ratas , Cardiotónicos/farmacología , Diuréticos Osmóticos/farmacología , Precondicionamiento Isquémico Miocárdico/métodos , Manitol/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Canales de Potasio/metabolismo , Distribución Aleatoria , Ratas Wistar
7.
Anesth Analg ; 132(1): 253-260, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32889843

RESUMEN

BACKGROUND: Cardioprotective interventions-such as pharmacological postconditioning-are a promising strategy to reduce deleterious consequences of ischemia and reperfusion injury (I/RI) in the heart, especially as timing and onset of myocardial infarction are unpredictable. Pharmacological postconditioning by treatment with dexmedetomidine (Dex), an α2-adrenoreceptor agonist, during reperfusion protects hearts from I/RI, independently of time point and duration of application during the reperfusion phase. The mitochondrial ATP-sensitive K (mKATP) and mitochondrial large-conductance calcium-sensitive potassium channel (mBKCa) play a pivotal role in mediating this cardioprotective effect. Therefore, we investigated whether Dex-induced cardioprotection during early or late reperfusion is mediated variously by these mitochondrial K-channels. METHODS: Hearts of male Wistar rats were randomized into 8 groups and underwent a protocol of 15 minutes adaption, 33 minutes ischemia, and 60 minutes reperfusion in an in vitro Langendorff-system. A 10-minute treatment phase was started directly (first subgroup, early reperfusion) or 30 minutes (second subgroup, late reperfusion) after the onset of reperfusion. Control (Con) hearts received vehicle only. In the first subgroup, hearts were treated with 3 nM Dex, 100 µM mKATP-channel blocker 5-hydroxydecanoate (5HD) or 1 µM mBKCa-channel blocker Paxilline (Pax) alone or with respective combinations (5HD + Dex, Pax + Dex). Hearts of the second subgroup received Dex alone (Dex30') or in combination with the respective blockers (5HD + Dex30', Pax + Dex30'). Infarct size was determined with triphenyltetrazoliumchloride staining. Hemodynamic variables were recorded during the whole experiment. RESULTS: During early reperfusion (first subgroup), the infarct size reducing effect of Dex (Con: 57% ± 9%, Dex: 31% ± 7%; P< .0001 versus Con) was completely abolished by 5HD and Pax (52% ± 6%; Pax + Dex: 53% ± 4%; each P< .0001 versus Dex), while both blockers alone had no effect on infarct size (5HD: 54% ± 8%, Pax: 53% ± 11%). During late reperfusion (second subgroup) the protective effect of Dex (Dex30': 33% ± 10%, P< .0001 versus Con) was fully abrogated by Pax (Pax + Dex30': 58% ± 7%, P < .0001 versus Dex30'), whereas 5HD did not block cardioprotection (5HD + Dex30': 36% ± 7%). Between groups and within each group throughout reperfusion no significant differences in hemodynamic variables were detected. CONCLUSIONS: Cardioprotection by treatment with Dex during early reperfusion seems to be mediated by both mitochondrial K-channels, whereas during late reperfusion only mBKCa-channels are involved.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Cardiotónicos/uso terapéutico , Dexmedetomidina/uso terapéutico , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Canales de Potasio/agonistas , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Cardiotónicos/farmacología , Dexmedetomidina/farmacología , Masculino , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Canales de Potasio/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar
8.
PLoS One ; 15(12): e0243220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270768

RESUMEN

Coronary effluent collected from ischemic preconditioning (IPC) treated hearts induces myocardial protection in non-ischemic-preconditioned hearts. So far, little is known about the number of IPC cycles required for the release of cardioprotective factors into the coronary effluent to successfully induce cardioprotection. This study investigated the cardioprotective potency of effluent obtained after various IPC cycles in the rat heart. Experiments were performed on isolated hearts of male Wistar rats, mounted onto a Langendorff system and perfused with Krebs-Henseleit buffer. In a first part, effluent was taken before (Con) and after each IPC cycle (Eff 1, Eff 2, Eff 3). IPC was induced by 3 cycles of 5 min of global myocardial ischemia followed by 5 minutes of reperfusion. In a second part, hearts of male Wistar rats were randomized to four groups (each group n = 4-5) and underwent 33 min of global ischemia followed by 60 min of reperfusion. The previously obtained coronary effluent was administered for 10 minutes before ischemia as a preconditioning stimulus. Infarct size was determined at the end of reperfusion by triphenyltetrazoliumchloride (TTC) staining. Infarct size with control effluent was 54±12%. Effluent obtained after IPC confers a strong infarct size reduction independent of the number of IPC cycles (Eff 1: 27±5%; Eff 2: 35±7%; Eff 3: 35±8%, each P<0.05 vs. Con). Effluent extracted after one cycle IPC is comparably protective as after two or three cycles IPC.


Asunto(s)
Cardiotónicos/farmacología , Precondicionamiento Isquémico Miocárdico/métodos , Isquemia Miocárdica/metabolismo , Animales , Corazón/fisiopatología , Masculino , Infarto del Miocardio/prevención & control , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio , Ratas , Ratas Wistar
9.
J Cardiovasc Pharmacol ; 76(6): 684-691, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33002964

RESUMEN

Ischemic preconditioning and postconditioning are strong measures preserving the heart against ischemia-reperfusion injury in experimental setting but are too invasive and impractical for clinical routine. The cardioprotective effects of ischemic preconditioning and postconditioning can be imitated pharmacologically, for example, with the phosphodiesterase inhibitors sildenafil and milrinone. We hypothesize that sildenafil-induced preconditioning is concentration dependent and further that a combined treatment of "nonprotective" versus "protective" concentrations of sildenafil and milrinone leads to a significant infarct size reduction. Experiments were performed on isolated hearts of male Wistar rats, randomized into 12 groups, mounted onto a Langendorff system, and perfused with Krebs-Henseleit buffer. All hearts underwent 33 minutes ischemia and 60 minutes of reperfusion. For determination of a concentration-dependent effect of sildenafil, hearts were perfused with increasing concentrations of sildenafil (0.1-1 µM) over 10 minutes before ischemia. In a second series of experiments, hearts were treated with 0.3 µM sildenafil or 1 µM milrinone as the "protective" concentrations. A higher concentration of respective drugs did not further reduce infarct size. In addition, a combination of "protective" and "nonprotective" concentrations of sildenafil and milrinone was applied. Sildenafil and milrinone in lower concentrations led to significant infarct size reduction, whereas combining both substances in cardioprotective concentrations did not enhance this effect. Sildenafil in a concentration of 0.3 µM induces myocardial protection. Furthermore, treatment with sildenafil and milrinone in lower concentrations had an equally strong cardioprotective effect regarding infarct size reduction compared with the administration of "protective" concentrations.


Asunto(s)
Milrinona/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/patología , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Hemodinámica/efectos de los fármacos , Preparación de Corazón Aislado , Masculino , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos
10.
J Clin Med ; 9(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413983

RESUMEN

Pharmacological preconditioning (PC) and postconditioning (PoC), for example, by treatment with the α2-adrenoreceptor agonist Dexmedetomidine (Dex), protects hearts from ischemia-reperfusion (I/R) injury in experimental studies, however, translation into the clinical setting has been challenging. Acute hyperglycemia adversely affects the outcome of patients with myocardial infarction. Additionally, it also blocks cardioprotection by multiple pharmacological agents. Therefore, we investigated the possible influence of acute hyperglycemia on Dexmedetomidine-induced pre- and postconditioning. Experiments were performed on the hearts of male Wistar rats, which were randomized into 7 groups, placed in an isolated Langendorff system and perfused with Krebs-Henseleit buffer. All hearts underwent 33 min of global ischemia, followed by 60 min of reperfusion. Control (Con) hearts received Krebs-Henseleit buffer (Con KHB), glucose (Con HG) or mannitol (Con NG) as vehicle only. Hearts exposed to hyperglycemia (HG) received KHB, containing 11 mmol/L glucose (an elevated, but commonly used glucose concentration for Langendorff perfused hearts) resulting in a total concentration of 22 mmol/L glucose throughout the whole experiment. To ensure comparable osmolarity with HG conditions, normoglycemic (NG) hearts received mannitol in addition to KHB. Hearts were treated with 3 nM Dexmedetomidine (Dex) before (DexPC) or after ischemia (DexPoC), under hyperglycemic or normoglycemic conditions. Infarct size was determined by triphenyltetrazoliumchloride staining. Acute hyperglycemia had no impact on infarct size compared to the control group with KHB (Con HG: 56 ± 9% ns vs. Con KHB: 56 ± 7%). DexPC reduced infarct size despite elevated glucose levels (DexPC HG: 35 ± 3%, p < 0.05 vs. Con HG). However, treatment with Dex during reperfusion showed no infarct size reduction under hyperglycemic conditions (DexPoC HG: 57 ± 9%, ns vs. Con HG). In contrast, hearts treated with mannitol demonstrated a significant decrease in infarct size compared to the control group (Con NG: 37 ± 3%, p < 0.05 vs. Con KHB). The combination of Dex and mannitol presents exactly opposite results to hearts treated with hyperglycemia. While DexPC completely abrogates infarct reduction through mannitol treatment (DexPC NG: 55 ± 7%, p < 0.05 vs. Con NG), DexPoC had no impact on mannitol-induced infarct size reduction (DexPoC NG: 38 ± 4%, ns vs. Con NG). Acute hyperglycemia inhibits DexPoC, while it has no impact on DexPC. Treatment with mannitol induces cardioprotection. Application of Dex during reperfusion does not influence mannitol-induced infarct size reduction, however, administering Dex before ischemia interferes with mannitol-induced cardioprotection.

11.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276406

RESUMEN

Ramelteon is a Melatonin 1 (MT1)-and Melatonin 2 (MT2)-receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Corazón/efectos de los fármacos , Indenos/farmacología , Precondicionamiento Isquémico Miocárdico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Cardiotónicos/farmacología , Masculino , Infarto del Miocardio , Miocardio/metabolismo , Ratas , Ratas Wistar , Transducción de Señal
12.
Cardiovasc Drugs Ther ; 34(3): 303-310, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32236860

RESUMEN

PURPOSE: The melatonin receptor (MT) agonist ramelteon has a higher affinity to MT1 than for MT2 receptors and induces cardioprotection by involvement of mitochondrial potassium channels. Activation of mitochondrial potassium channels leads to release of free radicals. We investigated whether (1) ramelteon-induced cardioprotection is MT2 receptor specific and (2) if free radicals are involved in ramelteon-induced cardioprotection. METHODS: Hearts of male Wistar rats were randomized, placed on a Langendorff system, and perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia hearts were perfused with ramelteon (Ram) with or without the MT2 receptor inhibitor 4-phenyl-2-propionamidotetralin (4P-PDOT+Ram, 4P-PDOT). In subsequent experiments, ramelteon was administered together with the radical oxygen species (ROS) scavenger N-2-mercaptopropionylglycine (MPG+Ram). To determine whether the blockade of ramelteon-induced cardioprotection can be restored, we combined ramelteon and MPG with mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A (CsA) at different time points. Infarct size was determined by triphenyltetrazolium chloride (TTC) staining. RESULTS: Ramelteon-induced infarct size reduction was completely blocked by 4P-PDOT and MPG. Ramelteon and MPG combined with CsA before ischemia were not cardioprotective but CsA at the onset of reperfusion could restore infarct size reduction. CONCLUSIONS: This study shows for the first time that despite the higher affinity to MT1 receptors, (1) ramelteon-induced cardioprotection involves MT2 receptors, (2) cardioprotection requires ROS release, and (3) inhibition of the mPTP can restore infarct size reduction.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Indenos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptor de Melatonina MT2/agonistas , Animales , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Receptor de Melatonina MT2/metabolismo , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos
13.
Anesth Analg ; 130(1): 90-98, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633505

RESUMEN

BACKGROUND: Timing and onset of myocardial ischemia are mostly unpredictable. Therefore, postconditioning could be an effective cardioprotective intervention. Because ischemic postconditioning is an invasive and not practicable treatment, pharmacological postconditioning would be a more suitable alternative cardioprotective measure. For the α2-adrenoreceptor agonist, dexmedetomidine postconditioning has been shown. However, data on a concentration-dependent effect of dexmedetomidine are lacking. Furthermore, it is unclear whether the time point and/or duration of dexmedetomidine administration in the reperfusion period is of relevance. We set out to determine whether infarct size reduction by dexmedetomidine is concentration dependent and whether time point and/or duration of dexmedetomidine application has an impact on the effect size of cardio protection. METHODS: Hearts of male Wistar rats were randomized and placed on a Langendorff system perfused with Krebs-Henseleit buffer at a constant pressure of 80 mm Hg. All hearts were subjected to 33 minutes of global ischemia and 60 minutes of reperfusion. In part I of the study, a concentration-response effect was determined by perfusing hearts with various concentrations of dexmedetomidine (0.3-100 nM) at the onset of reperfusion. Based on these results, part II of the study was conducted with 3 nM dexmedetomidine. Application of dexmedetomidine started directly at the onset of reperfusion (Dex60) and 15 minutes (Dex15), 30 minutes (Dex30), or 45 minutes (Dex45) after the start of reperfusion and lasted always until the end of the reperfusion period. Infarct size was determined by triphenyltetrazolium chloride staining. RESULTS: In part I, infarct size in control (Con) hearts was 62% ± 4%. Three-nanometer dexmedetomidine was the lowest most effective cardioprotective concentration and reduced infarct size to 24% ± 7% (P < .0001 versus Con). Higher concentrations did not confer stronger protection. Infarct size in control hearts from part II was 66% ± 6%. Different starting times and/or durations of application resulted in similar infarct size reduction (all P < .0001 versus Con). CONCLUSIONS: Postconditioning by dexmedetomidine is concentration dependent in ranges between 0.3 and 3 nM. Increased concentrations above 3 nM do not further enhance this cardioprotective effect. This cardioprotective effect is independent of time point and length of application in the reperfusion period.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Dexmedetomidina/administración & dosificación , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Preparación de Corazón Aislado , Masculino , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Ratas Wistar , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
14.
Cardiovasc Drugs Ther ; 33(5): 581-588, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31705225

RESUMEN

PURPOSE: Small and big conductance Ca2+-sensitive potassium (KCa) channels are involved in cardioprotective measures aiming at reducing myocardial reperfusion injury. For levosimendan, infarct size-reducing effects were shown. Whether activation of these channels is involved in levosimendan-induced postconditioning is unknown. We hypothesized that levosimendan exerts a concentration-dependent cardioprotective effect and that both types of Ca2+-sensitive potassium channels are involved. METHODS: In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. At the onset of reperfusion, hearts were perfused with various concentrations of levosimendan (0.03-1 µM) in order to determine a concentration-response relationship. To elucidate the involvement of KCa-channels for the observed cardioprotection, in the second set of experiments, 0.3 µM levosimendan was administered in combination with the subtype-specific KCa-channel inhibitors paxilline (1 µM, big KCa-channel) and NS8593 (0.1 µM, small KCa-channel) respectively. Infarct size was determined by tetrazolium chloride (TTC) staining. RESULTS: Infarct size in controls was 60 ± 7% and 59 ± 6% respectively. Levosimendan at a concentration of 0.3 µM reduced infarct size to 30 ± 5% (P < 0.0001 vs. control). Higher concentrations of levosimendan did not induce a stronger effect. Paxilline but not NS8593 completely abolished levosimendan-induced cardioprotection while both substances alone had no effect on infarct size. CONCLUSIONS: Cardioprotection by levosimendan-induced postconditioning shows a binary phenomenon, either ineffective or with maximal effect. The cardioprotective effect requires activation of big but not small KCa channels.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Precondicionamiento Isquémico Miocárdico , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Simendán/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Preparación de Corazón Aislado , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
15.
J Clin Med ; 8(6)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248164

RESUMEN

Major blood loss during cardiac surgery is associated with increased morbidity and mortality. Clinical pilot studies indicated that preoperative fibrinogen supplementation reduces postoperative blood loss without increasing thrombotic complications. However, an increase in fibrinogen concentration might rather aggravate pre-existing thrombosis than increase the incidence of thrombotic events. Therefore, we investigated, in the present study, whether fibrinogen supplementation influences (1) arterial thrombus formation, (2) the extent of myocardial infarction and (3) the cardioprotective effect of ischaemic preconditioning. Arterial thrombogenesis of the femoral artery was induced by topic FeCl3 treatment in anaesthetised Wistar rats after pretreatment with 60 mg/kg (Fiblow), 120 mg/kg (Fibhigh) or vehicle (Con). Vessel blood flow was monitored, and time to vessel occlusion was analysed as a marker for arterial thrombogenesis. In addition, regional myocardial I/R injury was induced by temporary left coronary artery occlusion in rats pretreated with or without fibrinogen supplementation. In additional groups, ischaemic preconditioning (IPC) was induced by 3 cycles of 5 min of ischaemia/reperfusion. In all groups, myocardial infarct size was determined by triphenyltetrazoliumchlorid staining. Arterial thrombogenesis was not affected by fibrinogen pretreatment. No differences in time until vessel occlusion between Con, Fiblow and Fibhigh groups were observed. In addition, fibrinogen supplementation in low and high concentrations had no effect on infarct size after regional myocardial ischaemia and reperfusion (Fiblow: 66 ± 10%, Fibhigh: 62 ± 9%; each ns vs. Con). IPC reduced infarct size from 62 ± 14% to 34 ± 12% (p < 0.05 vs. Con). Furthermore, both fibrinogen concentrations did not affect cardioprotection by ischaemic preconditioning (Fiblow + IPC: 34 ± 11%, Fibhigh + IPC: 31 ± 13%; each ns vs. IPC). Haemotherapy with fibrinogen did not affect arterial thrombogenesis, myocardial infarction and the cardioprotective effect of ischaemic preconditioning.

16.
J Clin Med ; 8(4)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013843

RESUMEN

The activation of mitochondrial calcium-sensitive potassium (mBKCa) channels is crucially involved in cardioprotection induced by preconditioning. For milrinone (Mil)-induced preconditioning, the involvement of mBKCa-channels and further mitochondrial signaling is unknown. We hypothesize that (1) Mil-induced preconditioning is concentration-dependent and (2) that the activation of mBKCa-channels, release of reactive oxygen species (ROS), and the mitochondrial permeability transition pore (mPTP) could be involved. Isolated hearts of male Wistar rats were perfused with Krebs-Henseleit buffer and underwent 33 min of ischemia followed by 60 min of reperfusion. For determination of a concentration-dependent effect of Mil, hearts were perfused with different concentrations of Mil (0.3-10 µM) over 10 min before ischemia. In a second set of experiments, in addition to controls, hearts were pretreated with the lowest protective concentration of 1 µM Mil either alone or combined with the mBKCa-channel blocker paxilline (Pax + Mil), or paxilline alone (Pax). In additional groups, Mil was administered with and without the ROS scavenger N-2-mercaptopropionylglycine (MPG + Mil, MPG) or the mPTP inhibitor cyclosporine A (MPG + Mil + CsA, CsA + Mil), respectively. Infarct sizes were determined by triphenyltetrazolium chloride (TTC) staining. The lowest and most cardioprotective concentration was 1 µM Mil (Mil 1: 32 ± 6%; p < 0.05 vs. Con: 63 ± 8% and Mil 0.3: 49 ± 6%). Pax and MPG blocked the infarct size reduction of Mil (Pax + Mil: 53 ± 6%, MPG + Mil: 59 ± 7%; p < 0.05 vs. Mil: 34 ± 6%) without having an effect on infarct size when administered alone (Pax: 53 ± 7%, MPG: 58 ± 5%; ns vs. Con). The combined administration of CsA completely restored the MPG-inhibited cardioprotection of Mil (MPG + Mil + CsA: 35 ± 7%, p < 0.05 vs. MPG + Mil). Milrinone concentration-dependently induces preconditioning. Cardioprotection is mediated by the activation of mBKCa-channels, release of ROS and mPTP inhibition.

17.
J Clin Med ; 8(3)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901956

RESUMEN

Anesthetics, especially propofol, are discussed to influence ischemic preconditioning. We investigated whether cardioprotection by milrinone or levosimendan is influenced by the clinically used anesthetics propofol, sevoflurane or dexmedetomidine. Hearts of male Wistar rats were randomised, placed on a Langendorff system and perfused with Krebs⁻Henseleit buffer (KHB) at a constant pressure of 80 mmHg. All hearts underwent 33 min of global ischemia and 60 min of reperfusion. Three different anesthetic regimens were conducted throughout the experiments: propofol (11 µM), sevoflurane (2.5 Vol%) and dexmedetomidine (1.5 nM). Under each anesthetic regimen, pharmacological preconditioning was induced by administration of milrinone (1 µM) or levosimendan (0.3 µM) 10 min before ischemia. Infarct size was determined by TTC staining. Infarct sizes in control groups were comparable (KHB-Con: 53 ± 9%, Prop-Con: 56 ± 9%, Sevo-Con: 56 ± 8%, Dex-Con: 53 ± 9%; ns). Propofol completely abolished preconditioning by milrinone and levosimendan (Prop-Mil: 52 ± 8%, Prop-Lev: 52 ± 8%; ns versus Prop-Con), while sevoflurane did not (Sevo-Mil: 31 ± 9%, Sevo-Lev: 33 ± 7%; p < 0.05 versus Sevo-Con). Under dexmedetomidine, results were inconsistent; levosimendan induced infarct size reduction (Dex-Lev: 36 ± 6%; p < 0.05 versus Dex-Con) but not milrinone (Dex-Mil: 51 ± 8%; ns versus Dex-Con). The choice of the anesthetic regimen has an impact on infarct size reduction by pharmacological preconditioning.

18.
J Clin Med ; 8(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30889854

RESUMEN

Omecamtiv mecarbil (OM) is a first-in-class myosin activator. It was developed as a new inotropic therapy option for heart failure and is currently the object of a phase 3 clinical trial program. OM activates ryanodine receptors, which were shown to be involved in cardioprotection induced by conditioning strategies. We hypothesize that OM exerts a concentration-dependent cardioprotective effect through pre- and postconditioning. Isolated male Wistar rat hearts underwent 33 min of global ischemia and 60 min of reperfusion. OM was administered in various concentrations (1, 3, 10, and 30 µM) over 10 min prior to ischemia. Based on these results, in subsequent experiments 3 and 10 µM OM were given over 10 min after ischemia. Infarct sizes were determined by TTC staining. In controls, the infarct size was 60% ± 10% and 59% ± 12%, respectively. Ten micromolar OM before ischemia reduced the infarct size to 33% ± 8%. The lower concentrations did not initiate cardioprotection, and the next highest concentration did not enhance the protective effect. Even if 10 µM OM was given in the early reperfusion phase, it significantly reduced the infarct size (31% ± 6%), whereas 3 µM OM did not trigger a protective effect (58% ± 15%). This study shows for the first time that OM induces cardioprotection by pre- and postconditioning with a binary phenomenon, which is either ineffective or has a maximal effect.

19.
Crit Care Med ; 47(3): e250-e255, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30608281

RESUMEN

OBJECTIVES: Remote ischemic preconditioning (RIPC) is a practicable and noninvasive method to protect the heart against ischemia reperfusion injury. Unfortunately results from clinical studies are not convincing. Propofol is suggested to be an inhibiting factor of cardioprotection by RIPC, but the underlying mechanism is still unknown. We investigated whether after RIPC the release of humoral factors and/or the direct cardioprotective effect at the myocardium is inhibited by propofol. DESIGN: Randomized, prospective, blinded laboratory investigation. SETTING: Experimental laboratory. PATIENTS/SUBJECTS: Male Wistar rats. INTERVENTIONS: Repetitive hind limb ischemia in rats-blood plasma transfers to isolated rat heart. MEASUREMENTS AND MAIN RESULTS: In male Wistar rats (six groups, each n = 6/group), RIPC was induced by four cycles of 5 minutes bilateral hind limb ischemia alternately with 5 minutes of reperfusion. Blood samples were taken with (RIPC) and without RIPC (Con). Rats received continuous anesthesia with pentobarbital (Pento, 40 mg/kg body weight/hr) or propofol (Prop, 12 mg/kg body weight/hr), respectively. Cardioprotective properties of the blood plasma was investigated in the rat heart in vitro (six groups, each n = 6/group) perfused with Krebs-Henseleit buffer alone or with propofol (10 µM). Plasma was administered over 10 minutes before myocardial ischemia. All hearts underwent 33 minutes of global ischemia followed by 1 hour of reperfusion. At the end of the experiments, infarct size was determined by triphenyl-tetrazolium-chloride staining. RIPC plasma from pentobarbital anesthetized rats (Pento-RIPC) reduced infarct size from 64% (62-71%) (Pento-Con) to 34% (30-39%) (p < 0.0001). Infarct size with control plasma from propofol anesthetized rats was 59% (58-64%) (Prop-Con). RIPC plasma could not induce cardioprotection (Prop-RIPC: 63% [56-70%] ns vs Prop-Con). In contrast, RIPC plasma from pentobarbital anesthetized rats induced a significant infarct size reduction under propofol perfusion (Pento-RIPC: 34% [30-42%] vs Pento-Con: 54% [53-63%]; p < 0.0001). CONCLUSIONS: Loss of cardioprotection by RIPC during propofol anesthesia depends on inhibition of release of humoral factors.


Asunto(s)
Anestésicos Intravenosos/efectos adversos , Precondicionamiento Isquémico , Daño por Reperfusión Miocárdica/prevención & control , Propofol/efectos adversos , Anestesia/efectos adversos , Animales , Hemodinámica , Miembro Posterior/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Masculino , Daño por Reperfusión Miocárdica/sangre , Distribución Aleatoria , Ratas , Ratas Wistar
20.
Cardiovasc Drugs Ther ; 32(5): 427-434, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30120617

RESUMEN

PURPOSE: Activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa)-channels is a crucial step for cardioprotection by preconditioning. Whether activation of these channels is involved in levosimendan-induced preconditioning is unknown. We investigated if cardioprotection by levosimendan requires activation of mBKCa-channels in the rat heart in vitro. METHODS: In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with different concentrations of levosimendan (0.03-1 µM) for determination of a dose-effect curve. In a second set of experiments, 0.3 µM levosimendan was administered in combination with the mBKCa-channel inhibitor paxilline (1 µM). Infarct size was determined by TTC staining. RESULTS: In control, animal's infarct size was 58 ± 7%. Levosimendan at a concentration of 0.3 µM reduced infarct size to 30 ± 7% (P < 0.05 vs. control). Higher concentrations with 1 µM levosimendan did not confer stronger protection. Paxilline completely blocked levosimendan-induced cardioprotection while paxilline alone had no effect on infarct size. CONCLUSIONS: This study shows that activation of mBKCa-channels plays a pivotal role in levosimendan-induced preconditioning.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Mitocondrias Cardíacas/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Simendán/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Indoles/farmacología , Preparación de Corazón Aislado , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Bloqueadores de los Canales de Potasio/farmacología , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...