Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Methods Protoc ; 8(1): bpad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046463

RESUMEN

Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.

2.
Bioengineering (Basel) ; 10(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760182

RESUMEN

The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain. However, few studies have demonstrated the ability to monitor and evaluate the barrier integrity by quantitatively analyzing the junction presentation in 3D microvessels. This study aimed to fabricate a simple vessel-on-chip, which allows for a rigorous quantitative investigation of junction presentation in 3D microvessels. To this end, we developed a rapid protocol that creates 3D microvessels with polydimethylsiloxane and microneedles. We established a simple vessel-on-chip model lined with human iPSC-derived brain microvascular endothelial-like cells (iBMEC-like cells). The 3D image of the vessel structure can then be "unwrapped" and converted to 2D images for quantitative analysis of cell-cell junction phenotypes. Our findings revealed that 3D cylindrical structures altered the phenotype of tight junction proteins, along with the morphology of cells. Additionally, the cell-cell junction integrity in our 3D models was disrupted by the tumor necrosis factor α. This work presents a "quick and easy" 3D vessel-on-chip model and analysis pipeline, together allowing for the capability of screening and evaluating the cell-cell junction integrity of endothelial cells under various microenvironment conditions and treatments.

3.
Acta Biomater ; 167: 109-120, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302732

RESUMEN

The blood-brain barrier (BBB) can respond to various mechanical cues such as shear stress and substrate stiffness. In the human brain, the compromised barrier function of the BBB is closely associated with a series of neurological disorders that are often also accompanied by the alteration of brain stiffness. In many types of peripheral vasculature, higher matrix stiffness decreases barrier function of endothelial cells through mechanotransduction pathways that alter cell-cell junction integrity. However, human brain endothelial cells are specialized endothelial cells that largely resist changes in cell morphology and key BBB markers. Therefore, it has remained an open question how matrix stiffness affects barrier integrity in the human BBB. To gain insight into the effects of matrix stiffness on BBB permeability, we differentiated brain microvascular endothelial-like cells from human induced pluripotent stem cells (iBMEC-like cells) and cultured the cells on extracellular matrix-coated hydrogels of varying stiffness. We first detected and quantified the junction presentation of key tight junction (TJ) proteins. Our results show matrix-dependent junction phenotypes in iBMEC-like cells, where cells on softer gels (1 kPa) have significantly lower continuous and total TJ coverages. We also determined that these softer gels also lead to decreased barrier function in a local permeability assay. Furthermore, we found that matrix stiffness regulates the local permeability of iBMEC-like cells through the balance of continuous ZO-1 TJs and no junction regions ZO-1 in tricellular regions. Together, these findings provide valuable insights into the effects of matrix stiffness on TJ phenotypes and local permeability of iBMEC-like cells. STATEMENT OF SIGNIFICANCE: Brain mechanical properties, including stiffness, are particularly sensitive indicators for pathophysiological changes in neural tissue. The compromised function of the blood-brain barrier is closely associated with a series of neurological disorders often accompanied by altered brain stiffness. In this study, we use polymeric biomaterials and provide new evidence that biomaterial stiffness regulates the local permeability in iPSC-derived brain endothelial cells in tricellular regions through the tight junction protein ZO-1. Our findings provide valuable insights into the changes in junction architecture and barrier permeability in response to different substrate stiffnesses. Since BBB dysfunction has been linked to many diseases, understanding the influence of substrate stiffness on junction presentations and barrier permeability could lead to the development of new treatments for diseases associated with BBB dysfunction or drug delivery across BBB systems.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Humanos , Barrera Hematoencefálica/metabolismo , Uniones Estrechas , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Mecanotransducción Celular , Células Cultivadas , Proteínas de Uniones Estrechas/metabolismo , Fenotipo
4.
Am J Physiol Cell Physiol ; 325(1): C208-C223, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246634

RESUMEN

Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.


Asunto(s)
Acuaporinas , Acuaporinas/genética , Acuaporinas/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Movimiento Celular
5.
Cell Mol Life Sci ; 80(2): 48, 2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36682037

RESUMEN

Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.


Asunto(s)
Acuaporinas , Endometriosis , Femenino , Humanos , Acuaporinas/metabolismo , Isoformas de Proteínas/metabolismo , Movimiento Celular/fisiología
6.
Front Cell Dev Biol ; 10: 790410, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252171

RESUMEN

Triple negative breast cancer (TNBC) follows a non-random pattern of metastasis to the bone and brain tissue. Prior work has found that brain-seeking breast tumor cells display altered proteomic profiles, leading to alterations in pathways related to cell signaling, cell cycle, metabolism, and extracellular matrix remodeling. Given the unique microenvironmental characteristics of brain and bone tissue, we hypothesized that brain- or bone-seeking TNBC cells may have altered morphologic or migratory phenotypes from each other, or from the parental TNBC cells, as a function of the biochemical or mechanical microenvironment. In this study, we utilized TNBC cells (MDA-MB-231) that were conditioned to metastasize solely to brain (MDA-BR) or bone (MDA-BO) tissue. We quantified characteristics such as cell morphology, migration, and stiffness in response to cues that partially mimic their final metastatic niche. We have shown that MDA-BO cells have a distinct protrusive morphology not found in MDA-P or MDA-BR. Further, MDA-BO cells migrate over a larger area when on a collagen I (abundant in bone tissue) substrate when compared to fibronectin (abundant in brain tissue). However, migration in highly confined environments was similar across the cell types. Modest differences were found in the stiffness of MDA-BR and MDA-BO cells plated on collagen I vs. fibronectin-coated surfaces. Lastly, MDA-BO cells were found to have larger focal adhesion area and density in comparison with the other two cell types. These results initiate a quantitative profile of mechanobiological phenotypes in TNBC, with future impacts aiming to help predict metastatic propensities to organ-specific sites in a clinical setting.

7.
iScience ; 25(2): 103845, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198898

RESUMEN

Cancer cells experience mechanical confining forces during metastasis and, consequently, can alter their migratory mechanisms. Localization of numerous mRNAs to cell protrusions contributes to cell polarization and migration and is controlled by proteins that can bind RNA and/or cytoskeletal elements, such as the adenomatous polyposis coli (APC). Here, we demonstrate that peripheral localization of APC-dependent RNAs in cells within confined microchannels is cell type dependent. This varying phenotype is determined by the levels of a detyrosinated tubulin network. We show that this network is regulated by mechanoactivity and that cells with mechanosensitive ion channels and increased myosin II activity direct peripheral localization of the RAB13 APC-dependent RNA. Through specific mislocalization of the RAB13 RNA, we show that peripheral RNA localization contributes to confined cell migration. Our results indicate that a cell's mechanical activity determines its ability to peripherally target RNAs and utilize them for movement in confinement.

8.
PLoS Pathog ; 18(1): e1010159, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995322

RESUMEN

The clinical impact of rhinovirus C (RV-C) is well-documented; yet, the viral life cycle remains poorly defined. Thus, we characterized RV-C15 replication at the single-cell level and its impact on the human airway epithelium (HAE) using a physiologically-relevant in vitro model. RV-C15 replication was restricted to ciliated cells where viral RNA levels peaked at 12 hours post-infection (hpi), correlating with elevated titers in the apical compartment at 24hpi. Notably, infection was associated with a loss of polarized expression of the RV-C receptor, cadherin-related family member 3. Visualization of double-stranded RNA (dsRNA) during RV-C15 replication revealed two distinct replication complex arrangements within the cell, likely corresponding to different time points in infection. To further define RV-C15 replication sites, we analyzed the expression and colocalization of giantin, phosphatidylinositol-4-phosphate, and calnexin with dsRNA. Despite observing Golgi fragmentation by immunofluorescence during RV-C15 infection as previously reported for other RVs, a high ratio of calnexin-dsRNA colocalization implicated the endoplasmic reticulum as the primary site for RV-C15 replication in HAE. RV-C15 infection was also associated with elevated stimulator of interferon genes (STING) expression and the induction of incomplete autophagy, a mechanism used by other RVs to facilitate non-lytic release of progeny virions. Notably, genetic depletion of STING in HAE attenuated RV-C15 and -A16 (but not -B14) replication, corroborating a previously proposed proviral role for STING in some RV infections. Finally, RV-C15 infection resulted in a temporary loss in epithelial barrier integrity and the translocation of tight junction proteins while a reduction in mucociliary clearance indicated cytopathic effects on epithelial function. Together, our findings identify both shared and unique features of RV-C replication compared to related rhinoviruses and define the impact of RV-C on both epithelial cell organization and tissue functionality-aspects of infection that may contribute to pathogenesis in vivo.


Asunto(s)
Retículo Endoplásmico/virología , Enterovirus/fisiología , Mucosa Respiratoria/virología , Replicación Viral/fisiología , Células Cultivadas , Efecto Citopatogénico Viral/fisiología , Humanos
9.
Mol Biol Cell ; 32(22): ar41, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731044

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-ß1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-ß1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.


Asunto(s)
Fibroblastos/citología , Pulmón/citología , Miofibroblastos/citología , Actinas/metabolismo , Recuento de Células , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
10.
Theranostics ; 11(20): 10148-10170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815809

RESUMEN

The blood-brain barrier (BBB) is a semipermeable unit that serves to vascularize the central nervous system (CNS) while tightly regulating the movement of molecules, ions, and cells between the blood and the brain. The BBB precisely controls brain homeostasis and protects the neural tissue from toxins and pathogens. The BBB is coordinated by a tight monolayer of brain microvascular endothelial cells, which is subsequently supported by mural cells, astrocytes, and surrounding neuronal cells that regulate the barrier function with a series of specialized properties. Dysfunction of barrier properties is an important pathological feature in the progression of various neurological diseases. In vitro BBB models recapitulating the physiological and diseased states are important tools to understand the pathological mechanism and to serve as a platform to screen potential drugs. Recent advances in this field have stemmed from the use of pluripotent stem cells (PSCs). Various cell types of the BBB such as brain microvascular endothelial cells (BMECs), pericytes, and astrocytes have been derived from PSCs and synergistically incorporated to model the complex BBB structure in vitro. In this review, we summarize the most recent protocols and techniques for the differentiation of major cell types of the BBB. We also discuss the progress of BBB modeling by using PSC-derived cells and perspectives on how to reproduce more natural BBBs in vitro.


Asunto(s)
Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Células Madre Pluripotentes/metabolismo , Astrocitos/fisiología , Transporte Biológico , Encéfalo/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Central , Células Endoteliales/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Neuronas/fisiología , Pericitos/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
11.
Adv Exp Med Biol ; 1329: 217-237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664242

RESUMEN

Astrocytes can play a seemingly contradictory dual role during tumor metastasis to the brain; they can be both protective of the brain and supportive of tumor cells during brain metastasis. The role of astrocytes is further complicated by the fact that metastatic tumor cells arriving in the brain via the circulatory system are separated from the brain perivascular space (in which the astrocytes reside) by the blood-brain barrier (BBB). It is not yet clear how tumor cells cross this highly selective barrier. The BBB can be modeled in vitro using different systems, cell types, and extracellular matrix components to study the interactions of metastatic tumor cells and astrocytes, with the specific aspects of the tumor microenvironment depending on the research questions. Some models focus on the interaction of two cell types while others are more complex and involve the neighboring neural cells and microenvironment. Regardless, these models have pointed to astrocytes as key regulators of tumor cell metastasis into the brain because they can influence tumor cells both directly and indirectly through other cells and/or the extracellular matrix (ECM). It is critical that in vitro models are carefully designed to consider how, and at which point in the metastatic cascade, astrocytes and tumor cells interact, both physically and biochemically. This chapter provides a critical evaluation of the different assays used to study metastatic tumor cell-astrocyte interactions and discusses their physiological implications.


Asunto(s)
Astrocitos , Neoplasias Encefálicas , Barrera Hematoencefálica , Encéfalo , Humanos , Microambiente Tumoral
12.
Artículo en Inglés | MEDLINE | ID: mdl-33519171

RESUMEN

The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.

13.
Biophys J ; 119(6): 1048-1049, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32853560
14.
Front Physiol ; 11: 365, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390868

RESUMEN

Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.

15.
Fluids Barriers CNS ; 17(1): 16, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046757

RESUMEN

BACKGROUND: The endothelial cell-cell junctions of the blood-brain barrier (BBB) play a pivotal role in the barrier's function. Altered cell-cell junctions can lead to barrier dysfunction and have been implicated in several diseases. Despite this, the driving forces regulating junctional protein presentation remain relatively understudied, largely due to the lack of efficient techniques to quantify their presentation at sites of cell-cell adhesion. Here, we used our novel Junction Analyzer Program (JAnaP) to quantify junction phenotype (i.e., continuous, punctate, or perpendicular) in response to various substrate compositions, cell culture times, and cAMP treatments in human brain microvascular endothelial cells (HBMECs). We then quantitatively correlated junction presentation with barrier permeability on both a "global" and "local" scale. METHODS: We cultured HBMECs on collagen I, fibronectin, collagen IV, laminin, fibronectin/collagen IV/laminin, or hyaluronic acid/gelatin for 2, 4, and 7 days with varying cAMP treatment schedules. Images of immunostained ZO-1, VE-cadherin, and claudin-5 were analyzed using the JAnaP to calculate the percent of the cell perimeter presenting continuous, punctate, or perpendicular junctions. Transwell permeability assays and resistance measurements were used to measure bulk ("global") barrier properties, and a "local" permeability assay was used to correlate junction presentation proximal to permeable monolayer regions. RESULTS: Substrate composition was found to play little role in junction presentation, while cAMP supplements significantly increased the continuous junction architecture. Increased culture time required increased cAMP treatment time to reach similar ZO-1 and VE-cadherin coverage observed with shorter culture, though longer cultures were required for claudin-5 presentation. Prolonged cAMP treatment (6 days) disrupted junction integrity for all three junction proteins. Transwell permeability and TEER assays showed no correlation with junction phenotype, but a local permeability assay revealed a correlation between the number of discontinuous and no junction regions with barrier penetration. CONCLUSIONS: These results suggest that cAMP signaling influences HBMEC junction architecture more than matrix composition. Our studies emphasized the need for local barrier measurement to mechanistically understand the role of junction phenotype and supported previous results that continuous junctions are indicative of a more mature/stable endothelial barrier. Understanding what conditions influence junction presentations, and how they, in turn, affect barrier integrity, could lead to the development of therapeutics for diseases associated with BBB dysfunction.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Fenotipo , Encéfalo/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Fibronectinas/metabolismo , Humanos , Permeabilidad , Uniones Estrechas/metabolismo
16.
Protein Sci ; 29(2): 480-493, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31675138

RESUMEN

Histatin 5 (Hst-5) is an antimicrobial peptide with strong antifungal activity against Candida albicans, an opportunistic pathogen that is a common cause of oral thrush. The peptide is natively secreted by human salivary glands and shows promise as an alternative therapeutic against infections caused by C. albicans. However, Hst-5 can be cleaved and inactivated by a family of secreted aspartic proteases (Saps) produced by C. albicans. Single-residue substitutions can significantly affect the proteolytic resistance of Hst-5 to Saps and its antifungal activity; the K17R substitution increases resistance to proteolysis, while the K11R substitution enhances antifungal activity. In this work, we showed that the positive effects of these two single-residue modifications can be combined in a single peptide, K11R-K17R, with improved proteolytic resistance and antifungal activity. We also investigated the effect of additional single-residue substitutions, with a focus on the effect of addition or removal of negatively charged residues, and found Sap-dependent effects on degradation. Both single- and double-substitutions affected the kinetics of proteolytic degradation of the intact peptide and of the fragments formed during degradation. Our results demonstrate the importance of considering proteolytic stability and not just antimicrobial activity when designing peptides for potential therapeutic applications.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/efectos de los fármacos , Histatinas/metabolismo , Proteolisis/efectos de los fármacos , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/química , Células HEK293 , Histatinas/química , Humanos , Cinética , Pruebas de Sensibilidad Microbiana
17.
Cell Mol Bioeng ; 12(3): 215-226, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31719911

RESUMEN

INTRODUCTION: The mechanical interaction between cells and their microenvironment is emerging as an important determinant of cancer progression and sensitivity to treatment, including in ovarian cancer (OvCa). However, current technologies limit mechanical analysis in 3D culture systems. Brillouin Confocal Microscopy is an optical non-contact method to assess the mechanical properties of biological materials. Here, we validate the ability of this technology to assess the mechanical properties of 3D tumor nodules. METHODS: OvCa cells were cultured in 3D using two established methods: (1) overlay cultures on Matrigel; (2) spheroids in ultra-low attachment plates. To alter the mechanical state of these tumors, nodules were immersed in PBS with varying levels of sucrose to induce osmotic stress. Next, nodule mechanical properties were measured by Brillouin microscopy and validated with standard stress-strain tests: Atomic Force Microscopy (AFM) and a parallel plate compression device (Microsquisher). Finally, the nodules were treated with a chemotherapeutic commonly used to manage OvCa, carboplatin, to determine treatment-induced effects on tumor mechanical properties. RESULTS: Brillouin microscopy allows mechanical analysis with limited penetration depth (~ 92 µm for Matrigel method; ~ 54 µm for low attachment method). Brillouin microscopy metrics displayed the same trends as the corresponding "gold-standard" Young's moduli measured with stress-strain methods when the osmolality of the medium was increased. Nodules treated with carboplatin showed a decrease in Brillouin frequency shift. CONCLUSION: This validation study paves the way to evaluate the mechanics of 3D nodules, with micron-scale three-dimensional resolution and without contact, thus extending the experimental possibilities.

18.
Cell Mol Bioeng ; 12(5): 455-480, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31719927

RESUMEN

INTRODUCTION: Tumor metastasis to the brain occurs in approximately 20% of all cancer cases and often occurs due to tumor cells crossing the blood-brain barrier (BBB). The brain microenvironment is comprised of a soft hyaluronic acid (HA)-rich extracellular matrix with an elastic modulus of 0.1-1 kPa, whose crosslinking is often altered in disease states. METHODS: To explore the effects of HA crosslinking on breast tumor cell migration, we developed a biomimetic model of the human brain endothelium, consisting of brain microvascular endothelial cell (HBMEC) monolayers on HA and gelatin (HA/gelatin) films with different degrees of crosslinking, as established by varying the concentration of the crosslinker Extralink. RESULTS AND DISCUSSION: Metastatic breast tumor cell migration speed, diffusion coefficient, spreading area, and aspect ratio increased with decreasing HA crosslinking, a mechanosensing trend that correlated with tumor cell actin organization but not CD44 expression. Meanwhile, breast tumor cell incorporation into endothelial monolayers was independent of HA crosslinking density, suggesting that alterations in HA crosslinking density affect tumor cells only after they exit the vasculature. Tumor cells appeared to exploit both the paracellular and transcellular routes of trans-endothelial migration. Quantitative phenotyping of HBMEC junctions via a novel Python software revealed a VEGF-dependent decrease in punctate VE-cadherin junctions and an increase in continuous and perpendicular junctions when HBMECs were treated with tumor cell-secreted factors. CONCLUSIONS: Overall, our quantitative results suggest that a combination of biochemical and physical factors promote tumor cell migration through the BBB.

19.
Tissue Eng Part C Methods ; 25(11): 662-676, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31347455

RESUMEN

Mechanical cues such as stiffness have been shown to influence cell gene expression, protein expression, and cell behaviors critical for tissue engineering. The mechanical cue of confinement is also a pervasive parameter affecting cells in vivo and in tissue-engineered constructs. Despite its prevalence, the mechanical cue of confinement lacks assays that provide precise control over the degree of confinement induced on cells, yield a large sample size, enable long-term culture, and enable easy visualization of cells over time. In this study, we developed a process to systematically confine cells using micropillar arrays. Using photolithography and polydimethylsiloxane (PDMS) molding, we created PDMS arrays of micropillars that were 5, 10, 20, or 50 µm in spacing and between 13 and 17 µm in height. The tops of micropillars were coated with Pluronic F127 to inhibit cell adhesion, and we observed that mesenchymal stem cells (MSCs) robustly infiltrated into the micropillar arrays. MSC and nucleus morphology were altered by narrowing the micropillar spacing, and cytoskeletal elements within MSCs appeared to become more diffuse with increasing confinement. Specifically, MSCs exhibited a ring of actin around their periphery and punctate focal adhesions. MSC migration speed was reduced by narrowing micropillar spacing, and distinct migration behaviors of MSCs emerged in the presence of micropillars. MSCs continued to proliferate within micropillar arrays after 3 weeks in culture, displaying our assay's capability for long-term studies. Our assay also has the capacity to provide adequate cell numbers for quantitative assays to investigate the effect of confinement on gene and protein expression. Through deeper understanding of cell mechanotransduction in the context of confinement, we can modify tissue-engineered constructs to be optimal for a given purpose. Impact Statement In this study, we developed a novel process to systematically confine cells using micropillar arrays. Our assay provides insight into cell behavior in response to mechanical confinement. Through deeper understanding of how cells sense and respond to confinement, we can fine tune tissue-engineered constructs to be optimal for a given purpose. By combining confinement with other physical cues, we can harness mechanical properties to encourage or inhibit cell migration, direct cells down a particular lineage, induce cell secretion of specific cytokines or extracellular vesicles, and ultimately direct cells to behave in a way conducive to tissue engineering.


Asunto(s)
Bioensayo/métodos , Dimetilpolisiloxanos/química , Células Madre Mesenquimatosas/citología , Recuento de Células , Movimiento Celular , Núcleo Celular/metabolismo , Forma del Núcleo Celular , Forma de la Célula , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Fenotipo , Reproducibilidad de los Resultados , Adulto Joven
20.
Cells ; 8(5)2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072066

RESUMEN

Mechanosensing of the mechanical microenvironment by cells regulates cell phenotype and function. The nucleus is critical in mechanosensing, as it transmits external forces from the cellular microenvironment to the nuclear envelope housing chromatin. This study aims to elucidate how mechanical confinement affects nuclear deformation within several cell types, and to determine the role of cytoskeletal elements in controlling nuclear deformation. Human cancer cells (MDA-MB-231), human mesenchymal stem cells (MSCs), and mouse fibroblasts (L929) were seeded within polydimethylsiloxane (PDMS) microfluidic devices containing microchannels of varying cross-sectional areas, and nuclear morphology and volume were quantified via image processing of fluorescent cell nuclei. We found that the nuclear major axis length remained fairly constant with increasing confinement in MSCs and MDA-MB-231 cells, but increased with increasing confinement in L929 cells. Nuclear volume of L929 cells and MSCs decreased in the most confining channels. However, L929 nuclei were much more isotropic in unconfined channels than MSC nuclei. When microtubule polymerization or myosin II contractility was inhibited, nuclear deformation was altered only in MSCs in wide channels. This work informs our understanding of nuclear mechanics in physiologically relevant spaces, and suggests diverging roles of the cytoskeleton in regulating nuclear deformation in different cell types.


Asunto(s)
Núcleo Celular/patología , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Forma del Núcleo Celular/efectos de los fármacos , Femenino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Nocodazol/farmacología , Polimerizacion , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...