Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Appl Environ Microbiol ; : e0045324, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752746

RESUMEN

Metals are essential for all living organisms, but the type of metal and its concentration determines its action. Even low concentrations of metals may have toxic effects on organisms and therefore exhibit antimicrobial activities. In this study, we investigate the evolutionary adaptation processes of Staphylococcus aureus to metals and common genes for metal tolerance. Laboratory and clinical isolates were treated with manganese, cobalt, zinc, or nickel metal salts to generate growth-adapted mutants. After growth in medium supplemented with zinc, whole-genome sequencing identified, among others, two genes, mgtE (SAUSA300_0910), a putative magnesium transporter and spoVG (SAUSA300_0475), a global transcriptional regulator, as hot spots for stress-induced single-nucleotide polymorphisms (SNPs). SNPs in mgtE were also detected in mutants treated with high levels of cobalt or nickel salts. To investigate the effect of these genes on metal tolerance, deletion mutants and complementation strains in an S. aureus USA300 LAC* laboratory strain were generated. Both, the mgtE and spoVG deletion strains were more tolerant to cobalt, manganese, and zinc. The mgtE mutant was also more tolerant to nickel exposure. Inductively coupled plasma mass spectrometry analysis demonstrated that the mgtE deletion mutant accumulated less intracellular zinc than the wild type, explaining increased tolerance. From these results, we conclude that mgtE gene inactivation increases zinc tolerance presumably due to reduced uptake of zinc. For the SpoVG mutant, no direct effect on the intracellular zinc concentration was detected, indicating toward different pathways to increase tolerance. Importantly, inactivation of these genes offers a growth advantage in environments containing certain metals, pointing toward a common tolerance mechanism. IMPORTANCE: Staphylococcus aureus is an opportunistic pathogen causing tremendous public health burden and high mortality in invasive infections. Treatment is becoming increasingly difficult due to antimicrobial resistances. The use of metals in animal husbandry and aquaculture to reduce bacterial growth and subsequent acquisition of metal resistances has been shown to co-select for antimicrobial resistance. Therefore, understanding adaptive mechanisms that help S. aureus to survive metal exposure is essential. Using a screening approach, we were able to identify two genes encoding the transporter MgtE and the transcriptional regulator SpoVG, which conferred increased tolerance to specific metals such as zinc when inactivated. Further testing showed that the deletion of mgtE leads to reduced intracellular zinc levels, suggesting a role in zinc uptake. The accumulation of mutations in these genes when exposed to other metals suggests that inactivation of these genes could be a common mechanism for intrinsic tolerance to certain metals.

2.
Nat Commun ; 14(1): 6479, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838722

RESUMEN

Global spread of multidrug-resistant, hospital-adapted Staphylococcus epidermidis lineages underscores the need for new therapeutic strategies. Here we show that many S. epidermidis isolates belonging to these lineages display cryptic susceptibility to penicillin/ß-lactamase inhibitor combinations under in vitro conditions, despite carrying the methicillin resistance gene mecA. Using a mouse thigh model of S. epidermidis infection, we demonstrate that single-dose treatment with amoxicillin/clavulanic acid significantly reduces methicillin-resistant S. epidermidis loads without leading to detectable resistance development. On the other hand, we also show that methicillin-resistant S. epidermidis is capable of developing increased resistance to amoxicillin/clavulanic acid during long-term in vitro exposure to these drugs. These findings suggest that penicillin/ß-lactamase inhibitor combinations could be a promising therapeutic candidate for treatment of a high proportion of methicillin-resistant S. epidermidis infections, although the in vivo risk of resistance development needs to be further addressed before they can be incorporated into clinical trials.


Asunto(s)
Penicilinas , Infecciones Estafilocócicas , Humanos , Penicilinas/farmacología , Penicilinas/uso terapéutico , Inhibidores de beta-Lactamasas/farmacología , Staphylococcus epidermidis , Infecciones Estafilocócicas/tratamiento farmacológico , Ácido Clavulánico/farmacología , Ácido Clavulánico/uso terapéutico , Amoxicilina/farmacología , Amoxicilina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Clin Microbiol Infect ; 29(10): 1334.e1-1334.e6, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37321393

RESUMEN

OBJECTIVES: Because of a steady increase in the detection of daptomycin-resistant (DAP-R) Staphylococcus aureus at three medical centres in Cologne, Germany, molecular surveillance was established from June 2016 to June 2018 to investigate the causes of the emergence and spread of respective isolates. Seventy-five S. aureus isolates, both DAP-R and DAP-susceptible, were collected from 42 patients for further analysis. METHODS: Broth microdilution was used to determine the MICs for DAP and polyhexamethylene biguanide/polyhexanide (PHMB). To investigate the effect of PHMB on the development of DAP resistance, we performed selection experiments with PHMB. All isolates studied were subjected to whole-genome sequencing. Epidemiological, clinical, microbiological and molecular data were analysed comparatively. RESULTS: Acquisition of DAP resistance was mainly observed in patients with acute and chronic wounds (40/42, 96.2%) treated with antiseptic (32/42, 76.2%) rather than systemic antibiotic therapy using DAP or vancomycin (7/42, 16.7%). DAP-R S. aureus had a diverse genetic background; however, within individual patients, isolates were closely related. At least three potential transmission events were detected. Most DAP-R isolates had concomitant elevated MICs for PHMB (50/54, 92.6%), and in vitro selection experiments confirmed that PHMB treatment is capable of generating DAP resistance. DAP resistance could be linked to 12 different polymorphisms in the mprF gene in the majority of clinical isolates (52/54, 96.3%) as well as in all in vitro selected strains. DISCUSSION: DAP resistance in S. aureus can occur independently of prior antibiotic therapy and can be selected by PHMB. Therefore, wound treatment with PHMB may trigger individual resistance development associated with gain-of-function mutations in the mprF gene.


Asunto(s)
Antiinfecciosos Locales , Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Daptomicina/farmacología , Daptomicina/uso terapéutico , Staphylococcus aureus/genética , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Polimorfismo de Nucleótido Simple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
4.
Front Cell Infect Microbiol ; 12: 860163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372120

RESUMEN

We describe the identification of a methicillin-resistant, high-level mupirocin-resistant Staphylococcus argenteus. The isolate (1801221) was characterized as t6675-ST2250-SCCmecIVc, and whole-genome sequencing revealed that the isolate possessed two plasmids. One plasmid (34,870 bp), designated p1_1801221 with rep23, harboured the mupirocin resistance (mupA) gene. The second plasmid (20,644 bp), assigned as p2_1801221 with rep5a and rep16, carried the resistance determinants for penicillin (blaZ) and cadmium (cadD). Phylogenetic analysis revealed that the isolate clustered with the European ST2250 lineage. The overall high similarity of both plasmids in S. argenteus with published DNA sequences of Staphylococcus aureus plasmids strongly suggests an interspecies transfer. The pathogenic potential, community and nosocomial spread, and acquisition of antibiotic resistance gene determinants, including the mupA gene by S. argenteus, highlight its clinical significance and the need for its correct identification.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Mupirocina , Resistencia a la Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Mupirocina/farmacología , Filogenia , Staphylococcus
5.
Microbiol Resour Announc ; 10(50): e0074721, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34913718

RESUMEN

Here, we present the circular and complete genome sequences of the Nosocomiicoccus ampullae isolate 19-00310 and type strain DSM 19163. To our knowledge, these represent the first complete, circular chromosomes in the entire genus. Sequencing of a growth-adapted mutant suggests iron availability as a factor for growth improvement.

6.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34486969

RESUMEN

In Staphylococcus aureus, resistance to ß-lactamase stable ß-lactam antibiotics is mediated by the penicillinbinding protein 2a, encoded by mecA or by its homologues mecB or mecC. However, a substantial number of meticillin-resistant isolates lack known mec genes and, thus, are called meticillin resistant lacking mec (MRLM). This study aims to identify the genetic mechanisms underlying the MRLM phenotype. A total of 141 MRLM isolates and 142 meticillin-susceptible controls were included in this study. Oxacillin and cefoxitin minimum inhibitory concentrations were determined by broth microdilution and the presence of mec genes was excluded by PCR. Comparative genomics and a genome-wide association study (GWAS) approach were applied to identify genetic polymorphisms associated with the MRLM phenotype. The potential impact of such mutations on the expression of PBP4, as well as on cell morphology and biofilm formation, was investigated. GWAS revealed that mutations in gdpP were significantly associated with the MRLM phenotype. GdpP is a phosphodiesterase enzyme involved in the degradation of the second messenger cyclic-di-AMP in S. aureus. A total of 131 MRLM isolates carried truncations, insertions or deletions as well as amino acid substitutions, mainly located in the functional DHH-domain of GdpP. We experimentally verified the contribution of these gdpP mutations to the MRLM phenotype by heterologous complementation experiments. The mutations in gdpP had no effect on transcription levels of pbp4; however, cell sizes of MRLM strains were reduced. The impact on biofilm formation was highly strain dependent. We report mutations in gdpP as a clinically relevant mechanism for ß-lactam resistance in MRLM isolates. This observation is of particular clinical relevance, since MRLM are easily misclassified as MSSA (meticillin-susceptible S. aureus), which may lead to unnoticed spread of ß-lactam-resistant isolates and subsequent treatment failure.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/genética , Mutación , Staphylococcus aureus/genética , Resistencia betalactámica/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas , Estudio de Asociación del Genoma Completo , Humanos , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas , beta-Lactamas/farmacología
8.
Front Microbiol ; 12: 639660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658988

RESUMEN

BACKGROUND: As next generation sequencing (NGS) technologies have experienced a rapid development over the last decade, the investigation of the bacterial genetic architecture reveals a high potential to dissect causal loci of antibiotic resistance phenotypes. Although genome-wide association studies (GWAS) have been successfully applied for investigating the basis of resistance traits, complex resistance phenotypes have been omitted so far. For S. aureus this especially refers to antibiotics of last resort like daptomycin and ceftaroline. Therefore, we aimed to perform GWAS for the identification of genetic variants associated with DAP and CPT resistance in clinical S. aureus isolates. MATERIALS/METHODS: To conduct microbial GWAS, we selected cases and controls according to their clonal background, date of isolation, and geographical origin. Association testing was performed with PLINK and SEER analysis. By using in silico analysis, we also searched for rare genetic variants in candidate loci that have previously been described to be involved in the development of corresponding resistance phenotypes. RESULTS: GWAS revealed MprF P314L and L826F to be significantly associated with DAP resistance. These mutations were found to be homogenously distributed among clonal lineages suggesting convergent evolution. Additionally, rare and yet undescribed single nucleotide polymorphisms could be identified within mprF and putative candidate genes. Finally, we could show that each DAP resistant isolate exhibited at least one amino acid substitution within the open reading frame of mprF. Due to the presence of strong population stratification, no genetic variants could be associated with CPT resistance. However, the investigation of the staphylococcal cassette chromosome mec (SCCmec) revealed various mecA SNPs to be putatively linked with CPT resistance. Additionally, some CPT resistant isolates revealed no mecA mutations, supporting the hypothesis that further and still unknown resistance determinants are crucial for the development of CPT resistance in S. aureus. CONCLUSION: We hereby confirmed the potential of GWAS to identify genetic variants that are associated with antibiotic resistance traits in S. aureus. However, precautions need to be taken to prevent the detection of spurious associations. In addition, the implementation of different approaches is still essential to detect multiple forms of variations and mutations that occur with a low frequency.

9.
Diagn Microbiol Infect Dis ; 99(4): 115301, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33444893

RESUMEN

The increasing number of nosocomial pathogens with resistances against last resort antibiotics like linezolid leads to a pressing need for the reliable detection of these drug-resistant bacteria. National guidelines on infection prevention, e.g., in Germany, have already recommend screening for linezolid-resistant bacteria, although a corresponding screening agar medium has not been provided. In this study we analyzed the performance and reliability of a commercial, chromogenic linezolid screening agar. The medium was capable to predict more than a hundred linezolid-resistant isolates of E. faecium, E. faecalis, S. aureus, S. epidermidis, and S. hominis with excellent sensitivity and specificity. All isolates were collected at the National Reference Centre between 2010 and 2020.


Asunto(s)
Agar/química , Compuestos Cromogénicos/química , Enterococcus/efectos de los fármacos , Linezolid/farmacología , Staphylococcus/efectos de los fármacos , Técnicas Bacteriológicas , Enterococcus/genética , Genotipo , Staphylococcus/genética
10.
Front Microbiol ; 11: 2063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983046

RESUMEN

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a common healthcare-associated pathogen that remains a major public health concern. Sequence type 228 (ST228) was first described in Germany and spread to become a successful MRSA clone in several European countries. In 2000, ST228 emerged in Lausanne and has subsequently caused several large outbreaks. Here, we describe the evolutionary history of this clone and identify the genetic changes underlying its expansion in Switzerland. MATERIALS AND METHODS: We aimed to understand the phylogeographic and demographic dynamics of MRSA ST228/ST111 by sequencing 530 representative isolates of this clone that were collected from 14 European countries between 1997 and 2012. RESULTS: The phylogenetic analysis revealed distinct lineages of ST228 isolates associated with specific geographic origins. In contrast, isolates of ST111, which is a single locus variant of ST228 sharing the same spa type t041, formed a monophyletic cluster associated with multiple countries. The evidence points to a German origin of the sampled population, with the basal German lineage being characterized by spa type t001. The highly successful Swiss ST228 lineage diverged from this progenitor clone through the loss of the aminoglycoside-streptothricin resistance gene cluster and the gain of mupirocin resistance. This lineage was introduced first in Geneva and was subsequently introduced into Lausanne. CONCLUSION: Our results reveal the radiation of distinct lineages of MRSA ST228 from a German progenitor, as the clone spread into different European countries. In Switzerland, ST228 was introduced first in Geneva and was subsequently introduced into Lausanne.

11.
Sci Rep ; 10(1): 14787, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901059

RESUMEN

Functionality of the accessory gene regulator (agr) quorum sensing system is an important factor promoting either acute or chronic infections by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major clonal lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n = 33) obtained in Europe as well as in closely related human isolates (n = 12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Agr functionality was assessed by a combination of phenotypic assays and proteome analysis. In each CC, isolates with varying agr activity levels were detected, including the presence of completely non-functional variants. Genomic comparison of the agr I-IV encoding regions associated these phenotypic differences with variations in the agrA and agrC genes. The genomic changes were detected independently in divergent lineages, suggesting that agr variation might foster viability and adaptation of emerging MRSA lineages to distinct ecological niches.


Asunto(s)
Proteínas Bacterianas/metabolismo , Variación Genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Proteoma/análisis , Infecciones Estafilocócicas/microbiología , Transactivadores/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Fenotipo , Percepción de Quorum , Infecciones Estafilocócicas/genética , Transactivadores/metabolismo , Factores de Virulencia/genética
12.
Toxins (Basel) ; 12(2)2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991690

RESUMEN

Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S.aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S.aureus, respectively.


Asunto(s)
Animales Salvajes/microbiología , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Coagulación Sanguínea , República Checa , Ecosistema , Alemania , Meticilina/farmacología , Epidemiología Molecular , Nariz/microbiología , Ratas Sprague-Dawley , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Factores de Virulencia/genética
13.
mBio ; 10(6)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772058

RESUMEN

The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , Antibacterianos/farmacología , Asia/epidemiología , Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/transmisión , Evolución Molecular , Genoma Bacteriano , Humanos , India , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Filogenia , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/transmisión , Staphylococcus aureus/clasificación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
14.
Mol Cell Proteomics ; 17(12): 2412-2433, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30201737

RESUMEN

The spread of methicillin-resistant Staphylococcus aureus (MRSA) in the community, hospitals and in livestock is mediated by highly diverse virulence factors that include secreted toxins, superantigens, enzymes and surface-associated adhesins allowing host adaptation and colonization. Here, we combined proteogenomics, secretome and phenotype analyses to compare the secreted virulence factors in selected S. aureus isolates of the dominant human- and livestock-associated genetic lineages CC8, CC22, and CC398. The proteogenomic comparison revealed 2181 core genes and 1306 accessory genes in 18 S. aureus isolates reflecting the high genome diversity. Using secretome analysis, we identified 869 secreted proteins with 538 commons in eight isolates of CC8, CC22, and CC398. These include 64 predicted extracellular and 37 cell surface proteins that account for 82.4% of total secretome abundance. Among the top 10 most abundantly secreted virulence factors are the major autolysins (Atl, IsaA, Sle1, SAUPAN006375000), lipases and lipoteichoic acid hydrolases (Lip, Geh, LtaS), cytolytic toxins (Hla, Hlb, PSMß1) and proteases (SspB). The CC398 isolates showed lower secretion of cell wall proteins, but higher secretion of α- and ß-hemolysins (Hla, Hlb) which correlated with an increased Agr activity and strong hemolysis. CC398 strains were further characterized by lower biofilm formation and staphyloxanthin levels because of decreased SigB activity. Overall, comparative secretome analyses revealed CC8- or CC22-specific enterotoxin and Spl protease secretion as well as Agr- and SigB-controlled differences in exotoxin and surface protein secretion between human-specific and zoonotic lineages of S. aureus.


Asunto(s)
Filogenia , Proteogenómica/métodos , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Animales , Supervivencia Celular , Cromatografía Liquida , Bases de Datos Genéticas , Variación Estructural del Genoma , Genotipo , Caballos , Humanos , Proteoma/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Porcinos , Espectrometría de Masas en Tándem , Virulencia , Factores de Virulencia/metabolismo , Secuenciación Completa del Genoma , Zoonosis
15.
Nat Microbiol ; 3(10): 1175-1185, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177740

RESUMEN

Staphylococcus epidermidis is a conspicuous member of the human microbiome, widely present on healthy skin. Here we show that S. epidermidis has also evolved to become a formidable nosocomial pathogen. Using genomics, we reveal that three multidrug-resistant, hospital-adapted lineages of S. epidermidis (two ST2 and one ST23) have emerged in recent decades and spread globally. These lineages are resistant to rifampicin through acquisition of specific rpoB mutations that have become fixed in the populations. Analysis of isolates from 96 institutions in 24 countries identified dual D471E and I527M RpoB substitutions to be the most common cause of rifampicin resistance in S. epidermidis, accounting for 86.6% of mutations. Furthermore, we reveal that the D471E and I527M combination occurs almost exclusively in isolates from the ST2 and ST23 lineages. By breaching lineage-specific DNA methylation restriction modification barriers and then performing site-specific mutagenesis, we show that these rpoB mutations not only confer rifampicin resistance, but also reduce susceptibility to the last-line glycopeptide antibiotics, vancomycin and teicoplanin. Our study has uncovered the previously unrecognized international spread of a near pan-drug-resistant opportunistic pathogen, identifiable by a rifampicin-resistant phenotype. It is possible that hospital practices, such as antibiotic monotherapy utilizing rifampicin-impregnated medical devices, have driven the evolution of this organism, once trivialized as a contaminant, towards potentially incurable infections.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Rifampin/farmacología , Infecciones Estafilocócicas/epidemiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Coevolución Biológica , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mutación , Filogenia , Prevalencia , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/aislamiento & purificación
16.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29728378

RESUMEN

Few studies have been conducted on the susceptibility of bacteria to biocides. A total of 182 methicillin-resistant and -susceptible Staphylococcus aureus isolates collected from healthy or diseased humans and animals in Germany were included in the present study. Sixty-three isolates of animal origin and 119 human isolates were tested for their MICs to eight biocides or heavy metals by the broth microdilution method. The MIC50 and MIC90 values of human and animal isolates were equal or differed by not more than 1 dilution step, and statistical analysis revealed that differences between MICs of human and animal isolates were not significant. However, when taking into account the multilocus sequence type (MLST), a strong tendency (P = 0.054) to higher MICs of silver nitrate was detected for clonal complex 398 (CC398) isolates from humans compared to those from animals. Furthermore, a comparison of MIC values from isolates belonging to different clonal lineages revealed that important human lineages such as CC22 and CC5 exhibited significantly (P < 0.05) higher MICs for the biocides chlorhexidine, benzethonium chloride, and acriflavine than the main animal lineage sequence type 398 (ST398). Isolates with elevated MIC values were tested for the presence of biocide and heavy metal tolerance-mediating genes by PCR assays, and the following genes were detected: mepA (n [no. of isolates containing the gene] = 44), lmrS (n = 36), norA (n = 35), sepA (n = 22), mco (n = 5), czrC (n = 3), smr (n = 2), copA (n = 1), qacA and/or -B (n = 1), qacG (n = 2), and qacJ (n = 1). However, only for some compounds was a correlation between the presence of a biocide tolerance gene and the level of MIC values detected.IMPORTANCE Biocides play an essential role in controlling the growth of microorganisms and the dissemination of nosocomial pathogens. In this study, we determined the susceptibility of methicillin-resistant and -susceptible S. aureus isolates from humans and animals to various biocides and heavy metal ions and analyzed differences in susceptibilities between important clonal lineages. In addition, the presence of biocide or heavy metal tolerance-mediating genes was investigated. We demonstrated that important human lineages such as CC22 and CC5 had significantly higher MIC values for chlorhexidine, benzethonium chloride, and acriflavine than the main farm animal lineage, ST398. In addition, it was shown that for some combinations of biocides and tolerance genes, significantly higher MICs were detected for carriers. These findings provide new insights into S. aureus biocide and heavy metal tolerance.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Acriflavina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencetonio/farmacología , Linaje de la Célula/genética , Clorhexidina/farmacología , ADN Bacteriano/genética , Genes Bacterianos , Alemania , Metales Pesados/metabolismo , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Análisis de Secuencia de ADN
17.
J Antimicrob Chemother ; 73(5): 1185-1193, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29438544

RESUMEN

Objectives: To investigate an outbreak of linezolid-resistant Staphylococcus epidermidis (LRSE) in an interdisciplinary ICU, linezolid consumption and infection control measures taken. Methods: Routine surveillance of nosocomial infections revealed colonization and infection with LRSE affecting 14 patients during a 15 month period. LRSE isolates were analysed with respect to their clonal relatedness, antimicrobial susceptibility, the presence of cfr and/or mutations in the 23S rRNA, rplC, rplD and rplV genes. cfr plasmids were characterized by Illumina sequencing. Medical records were reviewed and antibiotic consumption was determined. Results: Molecular typing identified the presence of three different LRSE clusters: PFGE type I/ST168 (n = 5), PFGE type II/ST5 (n = 10) and PFGE type III/ST2 (n = 1). Ten strains harboured the cfr gene; we also detected mutations in the respective ribosomal protein genes. WGS revealed an almost identical 39 kb cfr plasmid obtained from strains of different genetic background (ST2, ST5, ST168) that shows high similarity to the recently published LRSE plasmid p12-02300. Due to an increase in the number of patients treated for infections with MRSA, a significant increase in linezolid usage was noted from January to July 2014 (from 5.55 to 20.41 DDDs/100 patient-days). Conclusions: Here, we report the molecular epidemiology of LRSE in an ICU. Our results suggest the selection of resistant mutants under linezolid treatment as well as the spread of cfr-carrying plasmids. The reduction of linezolid usage and the strengthening of contact precautions proved to be effective infection control measures.


Asunto(s)
Antibacterianos/farmacología , Infección Hospitalaria/epidemiología , Farmacorresistencia Bacteriana , Control de Infecciones/métodos , Linezolid/farmacología , Infecciones Estafilocócicas/epidemiología , Staphylococcus epidermidis/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Proteínas Bacterianas/genética , Infección Hospitalaria/prevención & control , Brotes de Enfermedades , Transmisión de Enfermedad Infecciosa/prevención & control , Femenino , Genotipo , Alemania , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/aislamiento & purificación
18.
J Antimicrob Chemother ; 73(5): 1181-1184, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360979

RESUMEN

Objectives: Linezolid-resistant Staphylococcus epidermidis (LRSE) and linezolid-dependent ST22 strains have been shown to predominate in tertiary care facilities all over Greece. We report herein the dissemination of ST22 but also ST2, ST5 and ST168 linezolid-dependent LRSE clones in four unrelated German hospitals. Methods: Fourteen LRSE clinical isolates recovered during 2012-14 from five distantly located German hospitals were tested by for MIC determination broth microdilution and Etest, PCR/sequencing for cfr and for mutations in 23S rRNA, rplC, rplD and rplV genes, MLST, PFGE and growth curves without and with linezolid at 16 and 32 mg/L. Results: Most (11, 78.6%) isolates had linezolid MICs >256 mg/L. Five isolates carried the cfr gene. Eight isolates belonged to ST22, two isolates each to ST168 and ST2 and one isolate each to ST5 and ST23. Ten isolates [seven belonging to ST22 and one to each of ST2, ST5 and ST168; all these STs belong to clonal complex (CC) 5] exhibited linezolid-dependent growth, growing significantly faster in linezolid-containing broth. Four isolates were non-dependent (one belonging to each of ST22, ST2, ST23 and ST168). Four isolates came from three different hospitals, whereas four and six isolates were recovered during outbreaks of LRSE in two distinct hospitals. Conclusions: The multi-clonal dissemination of CC5 linezolid-dependent LRSE throughout German hospitals along with the clonal expansion of ST22 linezolid-dependent LRSE in Greek hospitals is of particular concern. It is plausible that this characteristic is inherent and provides a selective advantage to CC5 LRSE under linezolid pressure, contributing to their dissemination throughout hospitals in these countries.


Asunto(s)
Antibacterianos/farmacología , Infección Hospitalaria/epidemiología , Genotipo , Linezolid/farmacología , Infecciones Estafilocócicas/epidemiología , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Infección Hospitalaria/microbiología , Transmisión de Enfermedad Infecciosa , Alemania/epidemiología , Hospitales , Humanos , Linezolid/metabolismo , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación Molecular , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/aislamiento & purificación
19.
Int J Med Microbiol ; 308(6): 590-597, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28967544

RESUMEN

Laboratory mice are the most commonly used animal model for Staphylococcus aureus infection studies. We have previously shown that laboratory mice from global vendors are frequently colonized with S. aureus. Laboratory mice originate from wild house mice. Hence, we investigated whether wild rodents, including house mice, as well as shrews are naturally colonized with S. aureus and whether S. aureus adapts to the wild animal host. 295 animals of ten different species were caught in different locations over four years (2012-2015) in Germany, France and the Czech Republic. 45 animals were positive for S. aureus (15.3%). Three animals were co-colonized with two different isolates, resulting in 48 S. aureus isolates in total. Positive animals were found in Germany and the Czech Republic in each studied year. The S. aureus isolates belonged to ten different spa types, which grouped into six lineages (clonal complex (CC) 49, CC88, CC130, CC1956, sequence type (ST) 890, ST3033). CC49 isolates were most abundant (17/48, 35.4%), followed by CC1956 (14/48, 29.2%) and ST890 (9/48, 18.8%). The wild animal isolates lacked certain properties that are common among human isolates, e.g., a phage-encoded immune evasion cluster, superantigen genes on mobile genetic elements and antibiotic resistance genes, which suggests long-term adaptation to the wild animal host. One CC130 isolate contained the mecC gene, implying wild rodents might be both reservoir and vector for methicillin-resistant . In conclusion, we demonstrated that wild rodents and shrews are naturally colonized with S. aureus, and that those S. aureus isolates show signs of host adaptation.


Asunto(s)
Animales Salvajes/microbiología , Roedores/microbiología , Musarañas/microbiología , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , República Checa/epidemiología , Francia/epidemiología , Alemania/epidemiología , Staphylococcus aureus Resistente a Meticilina , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/clasificación , Factores de Virulencia/genética
20.
J Clin Microbiol ; 56(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978682

RESUMEN

Similar to mecA, mecC confers resistance against beta-lactams, leading to the phenotype of methicillin-resistant Staphylococcus aureus (MRSA). However, mecC-harboring MRSA strains pose special difficulties in their detection. The aim of this study was to assess and compare different phenotypic systems for screening, identification, and susceptibility testing of mecC-positive MRSA isolates. A well-characterized collection of mecC-positive S. aureus isolates (n = 111) was used for evaluation. Routinely used approaches were studied to determine their suitability to correctly identify mecC-harboring MRSA, including three (semi)automated antimicrobial susceptibility testing (AST) systems and five selective chromogenic agar plates. Additionally, a cefoxitin disk diffusion test and an oxacillin broth microdilution assay were examined. All mecC-harboring MRSA isolates were able to grow on all chromogenic MRSA screening plates tested. Detection of these isolates in AST systems based on cefoxitin and/or oxacillin testing yielded overall positive agreements with the mecC genotype of 97.3% (MicroScan WalkAway; Siemens), 91.9% (Vitek 2; bioMérieux), and 64.9% (Phoenix, BD). The phenotypic resistance pattern most frequently observed by AST devices was "cefoxitin resistance/oxacillin susceptibility," ranging from 54.1% (Phoenix) and 83.8% (Vitek 2) to 92.8% (WalkAway). The cefoxitin disk diffusion and oxacillin broth microdilution assays categorized 100% and 61.3% of isolates to be MRSA, respectively. The chromogenic media tested confirmed their suitability to reliably screen for mecC-harboring MRSA. The AST systems showed false-negative results with varying numbers, misidentifying mecC-harboring MRSA as methicillin-susceptible S. aureus This study underlines cefoxitin's status as the superior surrogate mecC-positive MRSA marker.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cefoxitina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana/métodos , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/microbiología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Fenotipo , Infecciones Estafilocócicas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...