Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607084

RESUMEN

Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery. Recently, reports have provided convincing evidence that sex-dependent differences exist in how microglia function during CNS pathologies and the extent to which these cells contribute to neurorepair and endogenous recovery. Herein we employed flow cytometry and immunohistochemical methods to characterize the phenotype and population dynamics of activated innate immune cells within the injured spinal cord of age-matched male and female rats within the first week (7 days) following thoracic SCI contusion. This assessment included the analysis of pro- and anti-inflammatory markers, as well as the expression of critical immunomodulatory kinases, including P38 MAPK, and transcription factors, such as NFκB, which play pivotal roles in injury-induced inflammation. We demonstrate that activated microglia from the injured spinal cord of female rats exhibited a significantly diminutive pro-inflammatory response, but enhanced anti-inflammatory activity compared to males. These changes included lower levels of iNOS and TLR4 expression but increased levels of ARG-1 and CD68 in females after SCI. The altered expression of these markers is indicative of a disparate secretome between the microglia of males and females after SCI and that the female microglia possesses higher phagocytic capabilities (increased CD68). The examination of immunoregulatory kinases and transcription factors revealed that female microglia had higher levels of phosphorylated P38Thr180/Tyr182 MAPK and nuclear NFκB pp50Ser337 but lower amounts of nuclear NFκB pp65Ser536, suggestive of an attenuated pro-inflammatory phenotype in females compared to males after SCI. Collectively, this work provides novel insight into some of the sex disparities that exist in the innate immune response after SCI and indicates that sex is an important variable when designing and testing new therapeutic interventions or interpretating positive or negative responses to an intervention.


Asunto(s)
Traumatismos de la Médula Espinal , Ratas , Animales , Masculino , Femenino , Traumatismos de la Médula Espinal/patología , Inmunidad Innata , Inflamación/patología , Antiinflamatorios , Factores de Transcripción
2.
Eye Vis (Lond) ; 10(1): 42, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779186

RESUMEN

BACKGROUND: Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS: Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

3.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333178

RESUMEN

Background: Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods: Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

4.
Transl Vis Sci Technol ; 11(4): 4, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35377941

RESUMEN

Purpose: Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods: MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3-5 years post-metamorphic) X laevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2'-3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results: RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate-induced calcium responses in a dose-dependent manner. Conclusions: We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance: RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.


Asunto(s)
Células Ependimogliales , Neuronas Retinianas , Animales , Células Ependimogliales/metabolismo , Mamíferos , Ratones , Neuroglía/metabolismo , Retina , Xenopus laevis
5.
Biotechnol Rep (Amst) ; 32: e00681, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34611521

RESUMEN

The development of countermeasures that aid in the prevention and propagation of SARS-CoV-2 infections is critical to manage the continuing crisis brought about by COVID-19. Here we present a proof-of-concept study on the use of cell-mimetic microparticles (Cytomimetics) for the interference and sequestration of SARS-CoV-2 virions away from the cellular surfaces required for replication, disease manifestation, and outbreak propagation. Recombinant human ACE2 (rhACE2) functionalized onto the surface of cytomimetic particles binds the receptor binding domain (RBD) of recombinant SARS-CoV-2 spike protein with high affinity and demonstrated a stoichiometric advantage over the use of soluble rhACE2. Inhalation of rhACE2-Cytomimetic particles by mice prior to their exposure to aerosolized spike protein demonstrated the applicability of these cytomimetic particles in preventing viral protein binding to respiratory epithelial cells. Our study demonstrates the potential of an easily deliverable and highly modular technology for the control of viral infections and to complement other prophylactic countermeasures.

6.
J Orthop Res ; 36(6): 1659-1665, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29106758

RESUMEN

Traumatic knee injuries often result in damage to articular cartilage and other joint structures. Such trauma is a strong risk factor for the future development and progression of osteoarthritis (OA). The molecular mechanisms and signaling pathways modulating response to knee joint trauma remain unclear. Moreover, investigations of biomarkers influencing responses have been targeted rather than broad, unbiased discovery studies. Herein, we characterize the complete complement of extracellular RNA (exRNA) in the synovial fluid of 14 subjects following knee injury. Fluid was collected during surgery from the injured knees, and from the contralateral knee in a subset, undergoing surgical repair of the ACL and/or meniscal repair/debridement. Arthroscopic grading of chondral damage in four knee compartments was performed using the Outerbridge classification. exRNA was extracted and subjected to massively parallel total RNA sequencing. Differential abundance of RNA was calculated between the subject cohorts of injured and non-injured knee, average Outerbridge score ≥0.5 and less, and chronic and acute injury duration defined as ≤4 months till surgery or longer. Overall, expression of several thousand genes was identified in the synovial fluid. Furthermore, differential expression analysis suggests a role of exRNA fragments of matrix metalloproteinases and skeletal muscle fiber genes in the response to traumatic injury. Together, these data suggest that high-throughput approaches can indicate exRNA molecular signatures following knee trauma. Future studies are required to more fully characterize the biological roles of these exRNA and the cadence of their respective release that may lead to translational treatment options for post-traumatic OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1659-1665, 2018.


Asunto(s)
Perfilación de la Expresión Génica , Traumatismos de la Rodilla/metabolismo , ARN/análisis , Líquido Sinovial/química , Adolescente , Adulto , Femenino , Humanos , Traumatismos de la Rodilla/complicaciones , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/etiología , Proyectos Piloto , Estudios Retrospectivos , Análisis de Secuencia de ARN , Adulto Joven
7.
Stem Cell Res Ther ; 5(1): 2, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405805

RESUMEN

INTRODUCTION: While administration of ex vivo culture-expanded stem cells has been used to study immunosuppressive mechanisms in multiple models of autoimmune diseases, less is known about the uncultured, nonexpanded stromal vascular fraction (SVF)-based therapy. The SVF is composed of a heterogeneous population of cells and has been used clinically to treat acute and chronic diseases, alleviating symptoms in a range of tissues and organs. METHODS: In this study, the ability of human SVF cells was compared with culture-expanded adipose stem cells (ASCs) and bone-derived marrow stromal cells (BMSCs) as a treatment of myelin oligodendrocyte glycoprotein (35-55)-induced experimental autoimmune encephalitis in C57Bl/6J mice, a well-studied multiple sclerosis model (MS). A total of 1×106 BMSCs, ASCs, or SVF cells were administered intraperitoneally concomitantly with the induction of disease. Mice were monitored daily for clinical signs of disease by three independent, blinded investigators and rated on a scale of 0 to 5. Spinal cords were obtained after euthanasia at day 30 and processed for histological staining using luxol fast blue, toluidine blue, and hematoxylin and eosin to measure myelin and infiltrating immune cells. Blood was collected from mice at day 30 and analyzed by enzyme-linked immunosorbent assay to measure serum levels of inflammatory cytokines. RESULTS: The data indicate that intraperitoneal administration of all cell types significantly ameliorates the severity of disease. Furthermore, the data also demonstrate, for the first time, that the SVF was as effective as the more commonly cultured BMSCs and ASCs in an MS model. All cell therapies also demonstrated a similar reduction in tissue damage, inflammatory infiltrates, and sera levels of IFNγ and IL-12. While IFNγ levels were reduced to comparable levels between treatment groups, levels of IL-12 were significantly lower in SVF-treated than BMSC-treated or ASC-treated mice. CONCLUSIONS: Based on these data, it is evident that SVF cells have relevant therapeutic potential in an animal model of chronic MS and might represent a valuable tool for stem cell-based therapy in chronic inflammatory disease of the central nervous system. SVF offers advantages of direct and rapid isolation procedure in a xenobiotic-free environment.


Asunto(s)
Células Madre Adultas/trasplante , Encefalomielitis Autoinmune Experimental/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Tejido Adiposo/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Interferón gamma/sangre , Interleucina-12/sangre , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Médula Espinal/metabolismo , Médula Espinal/patología
8.
Breast Cancer Res ; 15(5): R102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24176089

RESUMEN

INTRODUCTION: Obesity has been associated with increased incidence and mortality of breast cancer. While the precise correlation between obesity and breast cancer remains to be determined, recent studies suggest that adipose tissue and adipose stem cells (ASCs) influence breast cancer tumorigenesis and tumor progression. METHODS: Breast cancer cells lines were co-cultured with ASCs (n = 24), categorized based on tissue site of origin and body mass index (BMI), and assessed for enhanced proliferation, alterations in gene expression profile with PCR arrays, and enhanced tumorigenesis in immunocompromised mice. The gene expression profile of ASCs was assess with PCR arrays and qRT-PCR and confirmed with Western blot analysis. Inhibitory studies were conducted by delivering estrogen antagonist ICI182,780, leptin neutralizing antibody, or aromatase inhibitor letrozole and assessing breast cancer cell proliferation. To assess the role of leptin in human breast cancers, Oncomine and Kaplan Meier plot analyses were conducted. RESULTS: ASCs derived from the abdominal subcutaneous adipose tissue of obese subjects (BMI > 30) enhanced breast cancer cell proliferation in vitro and tumorigenicity in vivo. These findings were correlated with changes in the gene expression profile of breast cancer cells after co-culturing with ASCs, particularly in estrogen receptor-alpha (ESR1) and progesterone receptor (PGR) expression. Analysis of the gene expression profile of the four groups of ASCs revealed obesity induced alterations in several key genes, including leptin (LEP). Blocking estrogen signaling with ICI182,780, leptin neutralizing antibody, or letrozole diminished the impact of ASCs derived from obese subjects. Women diagnosed with estrogen receptor/progesterone receptor positive (ER+/PR+) breast cancers that also expressed high levels of leptin had poorer prognosis than women with low leptin expression. CONCLUSION: ASCs isolated from the abdomen of obese subjects demonstrated increased expression of leptin, through estrogen stimulation, which increased breast cancer cell proliferation. The results from this study demonstrate that abdominal obesity induces significant changes in the biological properties of ASCs and that these alterations enhance ER+/PR+ breast cancer tumorigenesis through estrogen dependent pathways.


Asunto(s)
Adipocitos/metabolismo , Estrógenos/metabolismo , Obesidad/metabolismo , Transducción de Señal , Células Madre/metabolismo , Animales , Aromatasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Técnicas de Cocultivo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Femenino , Perfilación de la Expresión Génica , Gutatión-S-Transferasa pi/genética , Gutatión-S-Transferasa pi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leptina/genética , Leptina/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Obesidad/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Carga Tumoral
9.
Stem Cells ; 30(12): 2774-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22969001

RESUMEN

Adipose tissue maintains a subpopulation of cells, referred to as adipose-derived stromal/stem cells (ASCs), which have been associated with increased breast cancer tumorigenesis and metastasis. For ASCs to affect breast cancer cells, it is necessary to delineate how they mobilize and home to cancer cells, which requires mobilization and invasion through extracellular matrix barriers. In this study, ASCs were separated into four different categories based on the donor's obesity status and depot site of origin. ASCs isolated from the subcutaneous abdominal adipose tissue of obese patients (Ob(+)Ab(+)) demonstrated increased invasion through Matrigel as well as a chick chorioallantoic membrane, a type I collagen-rich extracellular matrix barrier. Detailed mRNA and protein analyses revealed that calpain-4, calpastatin, and MMP-15 were associated with increased invasion, and the silencing of each protease or protease inhibitor confirmed their role in ASC invasion. Thus, the data indicate that both the donor's obesity status and depot site of origin distinguishes the properties of subcutaneous-derived ASCs with respect to enhanced invasion and this is associated with the dysregulation of calpain-4, calpastatin, and MMP-15.


Asunto(s)
Adipocitos/patología , Proteínas de Unión al Calcio/metabolismo , Metaloproteinasa 15 de la Matriz/metabolismo , Obesidad/metabolismo , Obesidad/patología , Células del Estroma/metabolismo , Adipocitos/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Embrión de Pollo , Dipéptidos/farmacología , Femenino , Humanos , Metaloproteinasa 15 de la Matriz/genética , Invasividad Neoplásica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Células Madre/citología , Células del Estroma/patología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...