Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Folia Neuropathol ; 61(2): 138-143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37587888

RESUMEN

Peroxisome proliferator-activated receptors α (PPARα) are members of the nuclear receptors family and a very potent transcription factor engaged in the regulation of lipid and energy metabolism. Recent data suggest that PPARα could play an important role in the pathomechanism of Alzheimer's disease (AD) and other neuropsychiatric disorders. This study focused on the effect of a synthetic ligand of PPARα, GW7647 on the transcription of genes encoding proteins of mitochondria biogenesis and dynamics in the brain of AD mice. The experiments were carried out using 12-month-old female FVB-Tg mice with the V717I mutation of amyloid precursor protein (APP + ) and mice without the transgene (APP - ). Moreover, APP + and APP - mice were treated for 14 days with GW7647 administered subcutaneously with a dose 5 mg/kg b.w. Brain cortex was used and qRT-PCR was performed. Our data indicated that GW7647 upregulated the expression of genes encoding proteins of mitochondria biogenesis in ADTg mice. GW7647 enhanced the level of mRNA of Ppargc1, Nrf2 and Tfam in APP + as compared to APP - mice treated with GW7647. Moreover, our studies demonstrated that GW7647 had no effect on genes that regulate mitochondria fission and fusion of ADTg mice as correlated to mice without the transgene. Our results indicate that the ligand of PPARα, GW7647 may exert a promising neuroprotective effect through the regulation of transcription of genes coding proteins of mitochondria biogenesis. These data suggest that activation of PPARα at an early stage of AD could be a helpful strategy for slowing the progression of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Femenino , Animales , Ratones , Enfermedad de Alzheimer/genética , PPAR alfa/genética , Ligandos , Modelos Animales , Mitocondrias
2.
Neuromolecular Med ; 23(1): 86-98, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33210212

RESUMEN

Peroxisome proliferator-activated receptor (PPAR) ß/δ belongs to the family of hormone and lipid-activated nuclear receptors, which are involved in metabolism of long-chain fatty acids, cholesterol, and sphingolipids. Similar to PPAR-α and PPAR-γ, PPAR-ß/δ also acts as a transcription factor activated by dietary lipids and endogenous ligands, such as long-chain saturated and polyunsaturated fatty acids, and selected lipid metabolic products, such as eicosanoids, leukotrienes, lipoxins, and hydroxyeicosatetraenoic acids. Together with other PPARs, PPAR-ß/δ displays transcriptional activity through interaction with retinoid X receptor (RXR). In general, PPARs have been shown to regulate cell differentiation, proliferation, and development and significantly modulate glucose, lipid metabolism, mitochondrial function, and biogenesis. PPAR-ß/δ appears to play a special role in inflammatory processes and due to its proangiogenic and anti-/pro-carcinogenic properties, this receptor has been considered as a therapeutic target for treating metabolic syndrome, dyslipidemia, carcinogenesis, and diabetes. Until now, most studies were carried out in the peripheral organs, and despite of its presence in brain cells and in different brain regions, its role in neurodegeneration and neuroinflammation remains poorly understood. This review is intended to describe recent insights on the impact of PPAR-ß/δ and its novel agonists on neuroinflammation and neurodegenerative disorders, including Alzheimer's and Parkinson's, Huntington's diseases, multiple sclerosis, stroke, and traumatic injury. An important goal is to obtain new insights to better understand the dietary and pharmacological regulations of PPAR-ß/δ and to find promising therapeutic strategies that could mitigate these neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , PPAR delta/fisiología , PPAR-beta/fisiología , Antineoplásicos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Glioma/metabolismo , Inflamación , Metabolismo de los Lípidos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroglía/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , PPAR delta/agonistas , PPAR-beta/agonistas , Receptores X Retinoide/fisiología , Transducción de Señal , Transcripción Genética
3.
Neurochem Res ; 45(5): 972-988, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32170673

RESUMEN

Peroxisome proliferator activated receptor alpha (PPAR-α) belongs to the family of ligand-regulated nuclear receptors (PPARs). These receptors after heterodimerization with retinoid X receptor (RXR) bind in promotor of target genes to PPAR response elements (PPREs) and act as a potent transcription factors. PPAR-α and other receptors from this family, such as PPAR-ß/δ and PPAR-γ are expressed in the brain and other organs and play a significant role in oxidative stress, energy homeostasis, mitochondrial fatty acids metabolism and inflammation. PPAR-α takes part in regulation of genes coding proteins that are involved in glutamate homeostasis and cholinergic/dopaminergic signaling in the brain. Moreover, PPAR-α regulates expression of genes coding enzymes engaged in amyloid precursor protein (APP) metabolism. It activates gene coding of α secretase, which is responsible for non-amyloidogenic pathway of APP degradation. It also down regulates ß secretase (BACE-1), the main enzyme responsible for amyloid beta (Aß) peptide release in Alzheimer Diseases (AD). In AD brain expression of genes of PPAR-α and PPAR-γ coactivator-1 alpha (PGC-1α) is significantly decreased. PPARs are altered not only in AD but in other neurodegenerative/neurodevelopmental and psychiatric disorder. PPAR-α downregulation may decrease anti-oxidative and anti-inflammatory processes and could be responsible for the alteration of fatty acid transport, lipid metabolism and disturbances of mitochondria function in the brain of AD patients. Specific activators of PPAR-α may be important for improvement of brain cells metabolism and cognitive function in neurodegenerative and neurodevelopmental disorders.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , PPAR alfa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Fenofibrato/administración & dosificación , Fenofibrato/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , PPAR alfa/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...