Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169813, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184258

RESUMEN

The research focused on benzotriazole ultraviolet stabilizers (BUVs) which are commonly used compounds despite being found dangerous, e.g. promoting breast cancer cell proliferation, damaging vital organs such as hearts, brains livers and kidneys. The aim of the study was to analyse the efficiency and removal rate of BUVs from wastewater depending on the quantity of tested compounds and SBR anaerobic-aerobic conditions. The study was conducted in sequencing batch reactors (SBRs - 17 L) with real flocculent activated sludge (8 L) and model wastewater (5 L) containing UV-326, UV-327, UV-328, UV-329 and UV-P from 50 to 600 µg∙L-1. The SBR were operated in 390 cycles of 7 h and 10 min over 130 days. The similarity of the technological parameters of the treatment process to those used in a real wastewater treatment plant was maintained. Efficiency removal of individual BUVs was strictly dependent on the dose of compounds introduced into wastewater and ranged from 68.2 to 97 %. Removal of UV-329 occurred with lowest efficiency (from 68.2 to 85.2 %) while UV-326 was most efficiently removed from the wastewater (from 94.1 to 97 %). UV-329 was removed from wastewater with the lowest (0.0968-0.9524 µg∙L-1∙min-1) average removal rate while UV-327 with the highest (0.16-1.3357 µg∙L-1∙min-1), irrespective of BUVs dose in the influent. Secondary release of BUVs into the wastewater occurred in SBR during the settling phase and was dependent on the type and concentration of the BUVs in the raw wastewater. This occurrence was noted for UV-326 ≥ 100; UV-327 = 600; UV-328 ≥ 200; UV-329 ≥ 50 and UV-P ≥ 100 µg∙L-1. The settling phase needs to be shortened to the required minimum. This is an important conclusion for WWTPs in regards to SBR cycle duration and technological parameters of the treatment process.


Asunto(s)
Triazoles , Eliminación de Residuos Líquidos , Aguas Residuales , Reactores Biológicos , Aguas del Alcantarillado/análisis , Nitrógeno/análisis
2.
Sci Total Environ ; 847: 157571, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882328

RESUMEN

In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.


Asunto(s)
Araceae , Agua , Biodegradación Ambiental , Clorofila , Triazoles
3.
Sci Total Environ ; 839: 156246, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644405

RESUMEN

This study aimed to identify and quantify benzotriazoles (BTRs) emissions from road traffic and paved areas in an urban environment. Heterocyclic organic compounds BTRs are an emerging threat, under-recognized and under-analyzed in most environmental and water legislation. They are hazardous, potentially mutagenic, and carcinogenic micropollutants, not susceptible to effective biodegradation, and they move easily through the trophic chain, contaminating the environment and water resources. Traffic activities are a common source of BTR emissions in the urban environment, directly polluting human habitats through the different routes and numerous vehicles circulating in the cities. Using twelve heterogeneous locations scattered over a metropolitan area in Poland as a case study, this research analyzed the presence of BTRs in water samples from runoff produced from rainwater and snowmelt. 1H-BTR, 4Me-BTR, 5Me-BTR and 5Cl-BTR were detected in the tested runoff water. 5Cl-BTR was present in all samples and in the highest concentrations reaching 47,000 ng/L. Risk quotients calculated on the basis of the determined concentrations indicate that the highest environmental risk is associated with the presence of 5Cl-BTR and the sum of 4Me-BTR and 5Me-BTR, and the most sensitive organisms are bacteria and invertebrates. The results indicate that it is possible to associate the occurrence of these contaminants with the type of cover, traffic intensity, and vehicle type.


Asunto(s)
Triazoles , Agua , Monitoreo del Ambiente , Humanos , Polonia , Medición de Riesgo , Triazoles/análisis
4.
Sci Rep ; 11(1): 16766, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408258

RESUMEN

This manuscript presents new method of phosphorus recovery from aqueous solutions in a convenient form of readily-soluble phosphates using chitosan hydrogels. Non-modified chitosan hydrogel granules (CHs) and chitosan hydrogel granules crosslinked with epichlorohydrin (CHs-ECH) served as orthophosphate ion carriers. The developed method was based on cyclic sorption/desorption of orthophosphates, with desorption performed in each cycle to the same solution (the concentrate). The concentrations of orthophosphates obtained in the concentrates depended on, i.a., sorbent type, sorption pH, source solution concentration, and desorption pH. Phosphorus concentrations in the concentrates were even 30 times higher than these in the source solutions. The maximum concentrate concentrations reached 332.0 mg P-PO4/L for CHs and 971.6 mg P-PO4/L for CHs-ECH. The experimental series with CHs-ECH were characterized by higher concentrations of the obtained concentrate, however the concentrates were also more contaminated with Cl- and Na+ ions compared to series with CHs. The high content of chlorine and sodium ions in the concentrates was also favored by the low pH of sorption (pH < 4) and very high pH of desorption (pH > 12) in the cycles. After concentrate evaporation, phosphorus content in the sediment ranged from 17.81 to 19.83% for CHs and from 16.04 to 17.74% for CHs-ECH.

5.
Sci Rep ; 11(1): 9584, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953297

RESUMEN

This study aimed to examine sorption effectiveness of cationic dyes: Basic Red 46 (BR46) and Basic Violet 10 (BV10) onto spent coffee ground (CG) and spent green tea leaves (GTL). The scope of the study included, i.a.: sorbent FTIR spectra analysis, determination of pH effect on dye sorption effectiveness, analysis of dye sorption kinetics, and determination of maximal sorption capacity of the sorbents. The effectiveness of BR46 sorption on the sorbents tested was the highest at pH 6 and that of BV10 at pH 3. Both sorbents caused changes in solution pH during the sorption process, due to the system tending to reach the pH value approximating the pHZPC (pHPZC = 7.55 for CG and pHPZC = 7.05 for GTL). The time needed to reach BR46 and BV10 sorption equilibrium onto CG and GTL ranged from 180 to 240 min. The intramolecular diffusion model demonstrated that the sorption of cationic dyes onto CG and GTL proceeded in three phases differing in the intensity and duration. The maximal sorption capacity of CG reached 179.4 mg/g for BR46 and 59.3 mg/g for BV10. The sorption capacity of GTL was lower and reached 58.0 mg/g for BR46 and 26.7 mg/g for BV10.

6.
Sci Rep ; 11(1): 10098, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980908

RESUMEN

A rapid, sensitive, economically and ecologically friendly method based on one-step ultrasound-assisted emulsification microextraction and in situ derivatization followed by gas chromatography-mass spectrometry for simultaneous determination of low molecular benzotriazoles and benzotriazole-based ultraviolet filters was developed. The optimized method allows quantification of benzotriazole, 4-methylbenzotriazole, 5-methylbenzotriazole; 5-chlorobenzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzortriazole and 2-(2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole in municipal and industrial (dairy) wastewater. The method was validated using real influent and effluent wastewater and samples at various stages of the purification process. Relative recoveries obtained using wastewater as sample matrix were between 77 and 137%, method limits of detection from 0.001 to 0.035 µg/L, method limits of quantification from 0.003 to 0.116 µg/L, the repeatability expressed by the coefficient of variation did not exceed 12%. The use of the method for the determination of tested compounds in municipal and industrial wastewater showed their presence in most of the tested samples, in concentrations from LoD to 6.110 µg/L. The conducted studies of samples from municipal wastewater treatment plant located in north-east Poland showed that the effectiveness of benzotriazole removal by this plant wasfrom 29 to 84%. The load of tested compounds released into the environment by this facility ranges from 2 to 269 mg/day/1000 inhabitants.

7.
Sci Total Environ ; 720: 137377, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32143032

RESUMEN

Wastewater from households wastewater treatment plants (HWWTP) is discharged to the ground or to the surface waters. Special consideration should be given to the improvement of HWWTP effectiveness, particularly in relation to nutrients. The addition of biodegradable carbon sources to biofilm reactor, can enhance microbial activity but may also lead to filling clogging. The study aimed to compare 3 different organic substrates: acetic acid (commonly applied)and two untypical - citric acid and waste beer, under the same operational conditions in a post-denitrification biofilm reactor. The study investigated the impact of a type of organic substrate, low pH and time on: (1) biofilm growth, (2) the characteristics of extracellular polymeric substances (EPS), (3) the kinetics of nutrients removal and (4) reactor clogging. Results were referred to (5) the effectiveness of nutrients removal. The study demonstrated that low pH assured the development of a thinbiofilm. Citric acid ensured the lowest biomass volume, being by 53% lower than in the reactor with acetic acid and by as much as 61% lower than in the reactor with waste beer. The soluble EPS fraction prevailed in the total EPS in all reactors. The content of the tightly bound EPS fraction ranged from 26.93% (citric acid) to 36.32% (waste beer). Investigations showed also a high ratio of exoproteins to polysaccharide in all fractions, which indicated a significant role of proteins in developing a highly-proliferating biofilm. The treated wastewater met requirements of Polish regulations concerning COD and nitrogen concentrations.


Asunto(s)
Desnitrificación , Biopelículas , Reactores Biológicos , Carbono , Nitrógeno , Nutrientes , Eliminación de Residuos Líquidos , Aguas Residuales
8.
J Hazard Mater ; 383: 121184, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31522063

RESUMEN

The paper presents quantitative changes of selected 2- and 3-ring PAHs after process phases of GSBR reactor. The studies have been carried out for 264 cycles of GSBR reactor, during which concentration of naphthalene was increased in the range of 3.00-710.00 µg/L, acenaphthylene 1.00-160.00 µg/L, acenaphthene 3.00-440.00 µg/L. GSBR operating cycle consisted of filling (30 min), mixing (90 min), aeration (540 min), sedimentation (10 min), decanting (30 min) and downtime (20 min) phases. Activated sludge dry mass concentration was 4.00 kg/m3. Conducted studies showed that in GSBR reactor naphthalene was degraded with the highest intensity. Results of the statistical analysis confirmed that naphthalene concentrations were statistically significantly different (α = 0.05) after each individual GSBR process phase, while in case of acenaphthene and acenaphthylene, the differences were observed only between mixing and aeration phases. Additionally, equations estimating concentrations of PAHs in treated wastewater were developed. Selected activated sludge technological parameters (sludge volume index, sludge and hydraulic retention time) and concentration of PAHs were used for equations. The R2 coefficients of equations were above 0.99, which indicates a good adjustment of estimation to observed values.


Asunto(s)
Acenaftenos , Aguas del Alcantarillado , Biodegradación Ambiental , Reactores Biológicos
9.
Sci Total Environ ; 683: 21-28, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31129328

RESUMEN

There is a growing global environmental problem of agricultural wastewater from soilless plant cultivation systems. In most countries dominate open fertilization systems, in which excess of nutrient solution is discharged in an uncontrolled way into the ground inside greenhouses or adjacent areas. Wastewater from such systems is characterized by a very high concentration of nitrogen and phosphorus compounds and their discharge into the environment causes significant pollution of the water and soil environment. The goal of the research was to determine the contribution of electrochemical reduction of nitrogen, hydrogenotrophic and heterotrophic denitrification in the process of nitrogen removal in a rotating electrobiological contactor (REBC) depending on hydraulic retention time (HRT) and electric current density (J). Synthetic sewage with characteristics corresponding to wastewater from soilless cultivation of tomatoes was the subject of the research. The first part of the experiment included determination of the effect of HRT on the effectiveness of bio-processes of nutrients removal in a rotating biological contactor (RBC). The second concerned the effect of HRT and J on the effectiveness of nutrients removal in a rotating electrochemical contactor (RECC), while the third part - the effect of HRT and J on the effectiveness of nutrients removal in REBC. RBC was characterized by low efficiency of denitrification (6.2 to 9.2%). The effectiveness of nitrogen removal in RECC was determined by both electric current density and hydraulic retention time. The highest efficiency was 53.4%. REBC nitrogen removal effectiveness was higher than in RBC and in RECC. The nitrogen removal efficiency increased along with increasing values of HRT, reaching the maximum value of 68.6% for J=10.0A/m2 and HRT=24h. The contribution of hydrogenotrophic denitrification in total nitrogen removal increased with the increase of electric current density.


Asunto(s)
Reactores Biológicos , Desnitrificación , Técnicas Electroquímicas/métodos , Nitrógeno/análisis , Aguas Residuales/análisis , Biopelículas , Hidroponía , Oxidación-Reducción
10.
Chemosphere ; 171: 512-519, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28038423

RESUMEN

The study demonstrated that citric acid, as an organic carbon source, can improve denitrification in Anaerobic Sequencing Batch Biofilm Reactor (AnSBBR). The consumption rate of the organic substrate and the denitrification rate were lower during the period of the reactor's acclimatization (cycles 1-60; 71.5 mgCOD L-1 h-1 and 17.81 mgN L-1 h-1, respectively) than under the steady state conditions (cycles 61-180; 143.8 mgCOD L-1 h-1 and 24.38 mgN L-1 h-1). The biomass yield coefficient reached 0.04 ± 0.02 mgTSS· mgCODre-1 (0.22 ± 0.09 mgTSS mgNre-1). Observations revealed the diversified microbiological ecology of the denitrifying bacteria. Citric acid was used mainly by bacteria representing the Trichoccocus genus, which represented above 40% of the sample during the first phase of the process (cycles 1-60). In the second phase (cycles 61-180) the microorganisms the genera that consumed the acetate and formate, as the result of citric acid decomposition were Propionibacterium (5.74%), Agrobacterium (5.23%), Flavobacterium (1.32%), Sphaerotilus (1.35%), Erysipelothrix (1.08%).


Asunto(s)
Bacterias/efectos de los fármacos , Reactores Biológicos/microbiología , Ácido Cítrico/farmacología , Desnitrificación/efectos de los fármacos , Acetatos/metabolismo , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas , Biomasa , Formiatos/metabolismo
11.
Water Sci Technol ; 2017(1): 156-169, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29698231

RESUMEN

The annual global production of milk is approximately 630,000 million litres and the volume of generated dairy wastewater accounts for 3.2 m3·m-3 product. Dairy wastewater is characterized by a high load of chemical oxygen demand (COD). In many wastewater plants dairy wastewater and municipal wastewater are co-treated. The effect of dairy wastewater contribution on COD fraction changes in municipal sewage which has been treated with a sequencing batch reactor (SBR) in three wastewater treatment plants in north-east Poland is presented. In these plants the real contribution of dairy wastewater was 10, 13 and 17%. In raw wastewater, SS fraction (readily biodegradable dissolved organic matter) was dominant and ranged from 38.3 to 62.6%. In the effluent, SS fraction was not noted, which is indicative of consumption by microorganisms. The presence of dairy wastewater in municipal sewage does not cause changes in the content of the XI fraction (insoluble fractions of non-biodegradable organic matter). SBR effluents were dominated by non-biodegradable dissolved organic matter SI, which from 57.7 to 61.7%. In raw wastewater SI ranged from 1.0 to 4.6%. Xs fraction (slowly biodegradable non-soluble organic matter) in raw wastewater ranged from 24.6 to 45.5% while in treated wastewater it ranged from 28.6 to 30.8%. In the control object (fourth wastewater plant) which does not process dairy wastewater, the SS, SI, Xs and XI fraction in inflow was 28.7, 2.4, 51.7 and 17.2% respectively. In the effluent the SS, SI, Xs and XI fraction was below 0.1, 33.6, 50.0 and 16.4% respectively.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Industria Lechera , Aguas Residuales/química , Animales , Bovinos , Residuos Industriales , Polonia , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA