Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (201)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38009719

RESUMEN

Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.


Asunto(s)
Dióxido de Carbono , Suelo , Dióxido de Carbono/análisis , Minerales , Grano Comestible/química , Agua
2.
Glob Chang Biol ; 28(3): 711-726, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773318

RESUMEN

A number of negative emission technologies (NETs) have been proposed to actively remove CO2 from the atmosphere, with enhanced silicate weathering (ESW) as a relatively new NET with considerable climate change mitigation potential. Models calibrated to ESW rates in lab experiments estimate the global potential for inorganic carbon sequestration by ESW at about 0.5-5 Gt CO2  year-1 , suggesting ESW could be an important component of the future NETs mix. In real soils, however, weathering rates may differ strongly from lab conditions. Research on natural weathering has shown that biota such as plants, microbes, and macro-invertebrates can strongly affect weathering rates, but biotic effects were excluded from most ESW lab assessments. Moreover, ESW may alter soil organic carbon sequestration and greenhouse gas emissions by influencing physicochemical and biological processes, which holds the potential to perpetuate even larger negative emissions. Here, we argue that it is likely that the climate change mitigation effect of ESW will be governed by biological processes, emphasizing the need to put these processes on the agenda of this emerging research field.


Asunto(s)
Cambio Climático , Suelo , Carbono , Dióxido de Carbono , Secuestro de Carbono , Efecto Invernadero , Silicatos
4.
Sci Rep ; 9(1): 8259, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164672

RESUMEN

Near-infrared spectroscopy (NIRS) is a high-throughput technology with potential to infer nitrogen (N), phosphorus (P) and carbon (C) content of all vascular plants based on empirical calibrations with chemical analysis, but is currently limited to the sample populations upon which it is based. Here we provide a first step towards a global arctic-alpine NIRS model of foliar N, P and C content. We found calibration models to perform well (R2validation = 0.94 and RMSEP = 0.20% for N, R2validation = 0.76 and RMSEP = 0.05% for P and R2validation = 0.82 and RMSEP = 1.16% for C), integrating 97 species, nine functional groups, three levels of phenology, a range of habitats and two biogeographic regions (the Alps and Fennoscandia). Furthermore, when applied for predicting foliar N, P and C content in samples from a new biogeographic region (Svalbard), our arctic-alpine NIRS model performed well. The precision of the resulting NIRS method meet international requirements, indicating one NIRS measurement scan of a foliar sample will predict its N, P and C content with precision according to standard method performance. The modelling scripts for the prediction of foliar N, P and C content using NIRS along with the calibration models upon which the predictions are based are provided. The modelling scripts can be applied in other labs, and can easily be expanded with data from new biogeographic regions of interest, building the global arctic-alpine model.

5.
Sci Adv ; 5(5): eaav0395, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31049394

RESUMEN

While the importance of grasslands in terrestrial silicon (Si) cycling and fluxes to rivers is established, the influence of large grazers has not been considered. Here, we show that hippopotamuses are key actors in the savannah biogeochemical Si cycle. Through a detailed analysis of Si concentrations and stable isotope compositions in multiple ecosystem compartments of a savannah-river continuum, we constrain the processes influencing the Si flux. Hippos transport 0.4 metric tons of Si day-1 by foraging grass on land and directly egesting in the water. As such, they bypass complex retention processes in secondary soil Si pools. By balancing internal processes of dissolution and precipitation in the river sediment, we calculate that hippos affect up to 76% of the total Si flux. This can have a large impact on downstream lake ecosystems, where Si availability directly affects primary production in the diatom-dominated phytoplankton communities.


Asunto(s)
Artiodáctilos/fisiología , Digestión/fisiología , Ingestión de Alimentos/fisiología , Heces/química , Silicio/análisis , Animales , Diatomeas/química , Sedimentos Geológicos/química , Pradera , Isótopos/análisis , Kenia , Lagos/química , Fitoplancton/química , Poaceae/química , Ríos/química , Suelo/química
6.
Environ Monit Assess ; 188(12): 682, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27866372

RESUMEN

Wetlands fed by rivers can be a sink for elements depending on elemental concentrations, wetland hydrology, geochemistry, vegetation and climate. In the case of the Okavango Delta, northern Botswana, the outflow discharge is a small fraction (2-5%) of the inflow. This has strong potential consequences for the Delta, as it strongly affects element cycling and storage within the Delta. We estimated the inputs, behaviour and distribution of multiple elements along a longitudinal transect within the Okavango Delta, to show potential effects of retention mechanisms of different elements. High annual element input is rather attributed to discharge than to the concentration within the water, which is generally extremely low. We observed minimal enrichment of the elements within the water pathway along the transect from inflow to outlets, implying that element output is negligible. For most elements, we observed a high correlation between storage and sediment organic matter content. The organic matter content within the sediments was higher in the vegetated sediments than in non-vegetated sediments (factor âˆ¼ 10), and a similar trend was found for most elements. In conclusion, organic matter dominated in sediments from vegetated plots and thus plays an important role in retaining the elements within the sediments of the Delta. This finding has major implications for e.g. planning constructed wetlands for water purification or element retention especially in areas with high evapotranspiration.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Humedales , Botswana , Clima , Monitoreo del Ambiente , Ríos/química
7.
Sci Total Environ ; 572: 1289-1296, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26774130

RESUMEN

Changing fire regimes in response to climate change are likely to have significant effects on terrestrial ecosystems and biogeochemical cycles. While effects of fire on some nutrient cycles have been quite well-studied, little attention has been paid to the silicon cycle. We used an alkaline continuous extraction to examine changes in the quantity and characteristics of alkaline extractable Si (AlkExSi) after applying two burning treatments (no heating, 350°C and 550°C) to three types of organic soil material (from spruce forest, beech forest and a commercial peat). The total AlkExSi measured was 25.1±2.1mgg-1 and 15.4±0.9mgg-1 for spruce and beech respectively, and 1.2±0.5mgg-1 for peat. The alkaline extraction parameters confirm a purely biogenic AlkExSi source in untreated spruce and beech organic soil material samples. Organic soil material of beech forest had two biogenic silica pools, differing in reactivity during alkaline extraction. Burning severely alters the alkaline dissolution parameters suggesting a significant crystallization of biogenic Si (BSi) with increased burning severity. Additionally, dissolution experiments carried out in rain water showed that fire increased the solubility of BSi by a factor of 40 and 20 in the case of the spruce and beech organic soil material respectively. The extent of enhanced Si solubility appears to be a trade-off function between organic matter losses and degree of crystallization. The burned soils could provide a strong and immediate Si source for the environment. In situ ecosystem characteristics that affect the uptake-leaching balance will determine the fate of the dissolved Si. Ecosystems low in BSi, like Sphagnum peatland, will not show drastic alteration in the Si cycle due to fire.

9.
Front Plant Sci ; 6: 43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25699070

RESUMEN

The response of aquatic plants to abiotic factors is a crucial study topic, because the diversity of aquatic vegetation is strongly related to specific adaptations to a variety of environments. This biodiversity ensures resilience of aquatic communities to new and changing ecological conditions. In running water, hydrodynamic disturbance is one of the key factors in this context. While plant adaptations to resource stress (nutrients, light…) are well documented, adaptations to mechanical stress, particularly flow, are largely unknown. The submerged species Egeria densa was used in an experiment to detect whether the presence or absence of hydrodynamic stress causes plant thigmomorphogenetic responses (i) in terms of plant biogenic silica (BSi), cellulose and lignin concentrations, and (ii) in terms of plant strength. Plant silica concentrations, as well as lignin concentrations were significantly higher in presence of hydrodynamic stress. These physiological changes are accompanied by some significant changes in stem biomechanical traits: stem resistance to tensile forces (breaking force and breaking strength) and stiffness were higher for plants exposed to hydrodynamic stress. We conclude that the response of this aquatic plant species to mechanical stress is likely the explaining factor for a higher capacity to tolerate stress through the production of mechanically hardened shoots.

10.
Ambio ; 44 Suppl 2: S228-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681980

RESUMEN

Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha(-1) year(-1). Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future.


Asunto(s)
Suelo/química , Monitoreo del Ambiente , Fósforo/análisis , Agua/química , Movimientos del Agua
11.
Sci Rep ; 5: 7732, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25583031

RESUMEN

Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ(30)Si) signatures in soil water samples across a temperate land use gradient. We show that - independent of geological and climatological variation - there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ(30)Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ(30)Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate).


Asunto(s)
Agricultura/métodos , Ecosistema , Silicio/metabolismo , Isótopos , Plantas/metabolismo , Suelo/química , Agua , Tiempo (Meteorología)
12.
Front Plant Sci ; 5: 496, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309567

RESUMEN

Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R (2) = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R (2) = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R (2) = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si research domains.

13.
Proc Biol Sci ; 280(1772): 20132083, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24107532

RESUMEN

Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha(-1) y(-1)). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C-Si diatom interactions.


Asunto(s)
Bovinos/fisiología , Equidae/fisiología , Herbivoria , Ovinos/fisiología , Dióxido de Silicio/metabolismo , Alimentación Animal/análisis , Animales , Bélgica , Ambiente , Heces/química , Poaceae/química , Estaciones del Año
14.
Nat Commun ; 1: 129, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21119642

RESUMEN

Continental export of Si to the coastal zone is closely linked to the ocean carbon sink and to the dynamics of phytoplankton blooms in coastal ecosystems. Presently, however, the impact of human cultivation of the landscape on terrestrial Si fluxes remains unquantified and is not incorporated in models for terrestrial Si mobilization. In this paper, we show that land use is the most important controlling factor of Si mobilization in temperate European watersheds, with sustained cultivation (>250 years) of formerly forested areas leading to a twofold to threefold decrease in baseflow delivery of Si. This is a breakthrough in our understanding of the biogeochemical Si cycle: it shows that human cultivation of the landscape should be recognized as an important controlling factor of terrestrial Si fluxes.

15.
New Phytol ; 186(2): 385-91, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20136720

RESUMEN

*Although silica (Si) is not an essential element for plant growth in the classical sense, evidence points towards its functionality for a better resistance against (a)biotic stress. Recently, it was shown that wetland vegetation has a considerable impact on silica biogeochemistry. However, detailed information on Si uptake in aquatic macrophytes is lacking. *We investigated the biogenic silica (BSi), cellulose and lignin content of 16 aquatic/wetland species along the Biebrza river (Poland) in June 2006 and 2007. The BSi data were correlated with cellulose and lignin concentrations. *Our results show that macrophytes contain significant amounts of BSi: between 2 and 28 mg BSi g(-1). This is in the same order of magnitude as wetland species (especially grasses). Significant antagonistic correlations were found between lignin, cellulose and BSi content. Interestingly, observed patterns were opposite for wetland macrophytes and true aquatic macrophytes. *We conclude that macrophytes have an overlooked but potentially vast storage capacity for Si. Study of their role as temporal silica sinks along the land-ocean continuum is needed. This will further understanding of the role of ecosystems on land ocean transport of this essential nutrient.


Asunto(s)
Celulosa/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Dióxido de Silicio/metabolismo , Agua , Humedales , Biomasa , Geografía , Polonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...