Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38490181

RESUMEN

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Asunto(s)
Glicoproteínas de la Zona Pelúcida , Humanos , Masculino , Semen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas de la Zona Pelúcida/química , Glicoproteínas de la Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Femenino
2.
Nat Struct Mol Biol ; 29(3): 190-193, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35273390

RESUMEN

Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy.


Asunto(s)
Adhesinas Bacterianas , Fimbrias Bacterianas , Adhesinas Bacterianas/genética , Cristalografía por Rayos X , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Proteínas Ligadas a GPI , Humanos , Manosa/análisis , Uromodulina/análisis , Uromodulina/química , Uromodulina/metabolismo
3.
EMBO J ; 39(24): e106807, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33196145

RESUMEN

Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state. UMOD forms a one-start helix with an unprecedented 180-degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD-based models of heteromeric vertebrate egg coat filaments identify a common sperm-binding region at the interface between subunits.


Asunto(s)
Polímeros/química , Uromodulina/química , Zona Pelúcida/química , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón/métodos , Femenino , Humanos , Polimerizacion , Polímeros/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Uromodulina/genética , Uromodulina/metabolismo , Zona Pelúcida/metabolismo
4.
Sci Rep ; 9(1): 14607, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601908

RESUMEN

Pathogens often receive antibiotic resistance genes through horizontal gene transfer from bacteria that produce natural antibiotics. ErmE is a methyltransferase (MTase) from Saccharopolyspora erythraea that dimethylates A2058 in 23S rRNA using S-adenosyl methionine (SAM) as methyl donor, protecting the ribosomes from macrolide binding. To gain insights into the mechanism of macrolide resistance, the crystal structure of ErmE was determined to 1.75 Å resolution. ErmE consists of an N-terminal Rossmann-like α/ß catalytic domain and a C-terminal helical domain. Comparison with ErmC' that despite only 24% sequence identity has the same function, reveals highly similar catalytic domains. Accordingly, superposition with the catalytic domain of ErmC' in complex with SAM suggests that the cofactor binding site is conserved. The two structures mainly differ in the C-terminal domain, which in ErmE contains a longer loop harboring an additional 310 helix that interacts with the catalytic domain to stabilize the tertiary structure. Notably, ErmE also differs from ErmC' by having long disordered extensions at its N- and C-termini. A C-terminal disordered region rich in arginine and glycine is also a present in two other MTases, PikR1 and PikR2, which share about 30% sequence identity with ErmE and methylate the same nucleotide in 23S rRNA.


Asunto(s)
Farmacorresistencia Bacteriana , Macrólidos/farmacología , Metiltransferasas/química , ARN Ribosómico 23S/química , Saccharopolyspora/enzimología , Antibacterianos/farmacología , Arginina/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Fluorometría , Glicina/química , ARN Bacteriano/química , Especificidad por Sustrato
5.
Semin Immunol ; 33: 3-15, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29042025

RESUMEN

Leukotriene B4 (LTB4) is a lipid mediator derived from arachidonic acid (AA) by the sequential action of 5-lipoxygenase (5-LOX), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H). It was initially recognized for its involvement in the recruitment of neutrophils and is one of the most potent chemotactic agents known to date. A large body of data has indicated that LTB4 plays a significant role in many chronic inflammatory diseases, such as arthritis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer and more recently, metabolic disorder. In this review, we focus on the biosynthesis of LTB4 and its biological effects. In particular, we will describe a basic biochemical understanding integrated with recent developments in the field of structural biology of the three key enzymes (5-LOX, FLAP and LTA4H) in LTB4 biosynthesis, and also summarize the most outstanding work on in vivo biological and pathogenic roles of these enzymes and the development of enzyme inhibitors.


Asunto(s)
Artritis/inmunología , Enfermedades Cardiovasculares/inmunología , Leucotrieno B4/biosíntesis , Neoplasias/inmunología , Neutrófilos/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Humanos , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 114(36): 9689-9694, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827365

RESUMEN

Human leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional enzyme that converts the highly unstable epoxide intermediate LTA4 into LTB4, a potent leukocyte activating agent, while the aminopeptidase activity cleaves and inactivates the chemotactic tripeptide Pro-Gly-Pro. Here, we describe high-resolution crystal structures of LTA4H complexed with LTA4, providing the structural underpinnings of the enzyme's unique epoxide hydrolase (EH) activity, involving Zn2+, Y383, E271, D375, and two catalytic waters. The structures reveal that a single catalytic water is involved in both catalytic activities of LTA4H, alternating between epoxide ring opening and peptide bond hydrolysis, assisted by E271 and E296, respectively. Moreover, we have found two conformations of LTA4H, uncovering significant domain movements. The resulting structural alterations indicate that LTA4 entrance into the active site is a dynamic process that includes rearrangement of three moving domains to provide fast and efficient alignment and processing of the substrate. Thus, the movement of one dynamic domain widens the active site entrance, while another domain acts like a lid, opening and closing access to the hydrophobic tunnel, which accommodates the aliphatic tale of LTA4 during EH reaction. The enzyme-LTA4 complex structures and dynamic domain movements provide critical insights for development of drugs targeting LTA4H.


Asunto(s)
Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Leucotrieno B4/biosíntesis , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/genética , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zinc/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(11): 4227-32, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591641

RESUMEN

Leukotriene (LT) A4 hydrolase/aminopeptidase (LTA4H) is a bifunctional zinc metalloenzyme that catalyzes the committed step in the formation of the proinflammatory mediator LTB4. Recently, the chemotactic tripeptide Pro-Gly-Pro was identified as an endogenous aminopeptidase substrate for LTA4 hydrolase. Here, we determined the crystal structure of LTA4 hydrolase in complex with a Pro-Gly-Pro analog at 1.72 Å. From the structure, which includes the catalytic water, and mass spectrometric analysis of enzymatic hydrolysis products of Pro-Gly-Pro, it could be inferred that LTA4 hydrolase cleaves at the N terminus of the palindromic tripeptide. Furthermore, we designed a small molecule, 4-(4-benzylphenyl)thiazol-2-amine, denoted ARM1, that inhibits LTB4 synthesis in human neutrophils (IC50 of ∼0.5 µM) and conversion of LTA4 into LTB4 by purified LTA4H with a Ki of 2.3 µM. In contrast, 50- to 100-fold higher concentrations of ARM1 did not significantly affect hydrolysis of Pro-Gly-Pro. A 1.62-Å crystal structure of LTA4 hydrolase in a dual complex with ARM1 and the Pro-Gly-Pro analog revealed that ARM1 binds in the hydrophobic pocket that accommodates the ω-end of LTA4, distant from the aminopeptidase active site, thus providing a molecular basis for its inhibitory profile. Hence, ARM1 selectively blocks conversion of LTA4 into LTB4, although sparing the enzyme's anti-inflammatory aminopeptidase activity (i.e., degradation and inactivation of Pro-Gly-Pro). ARM1 represents a new class of LTA4 hydrolase inhibitor that holds promise for improved anti-inflammatory properties.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Inflamación/enzimología , Modelos Moleculares , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Conformación Proteica , Tiazoles/farmacología , Dominio Catalítico/genética , Cromatografía Líquida de Alta Presión , Cristalización , Epóxido Hidrolasas/química , Epóxido Hidrolasas/genética , Escherichia coli , Humanos , Inflamación/tratamiento farmacológico , Prolina/metabolismo , Espectrometría de Masas en Tándem , Tiazoles/química , Difracción de Rayos X
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 209-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531456

RESUMEN

Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 Šresolution crystal structure of substrate-free DhaA31, the 1.26 Šresolution structure of DhaA31 in complex with TCP and the 1.95 Šresolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.


Asunto(s)
Proteínas Bacterianas/química , Contaminantes Ambientales/química , Hidrolasas/química , Propano/análogos & derivados , Rhodococcus/química , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Contaminantes Ambientales/metabolismo , Hidrolasas/metabolismo , Hidrólisis , Modelos Moleculares , Mutagénesis , Propano/química , Propano/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Rhodococcus/enzimología
9.
Biochim Biophys Acta ; 1844(2): 439-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24333438

RESUMEN

Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ(6)-trans-Δ(8)-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ(6)-trans-Δ(8)-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.


Asunto(s)
Epóxido Hidrolasas/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno B4/metabolismo , Proteínas de Xenopus/química , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Hidrólisis , Ácidos Hidroxieicosatetraenoicos/química , Cinética , Leucotrieno B4/química , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
10.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 3): 397-400, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21393851

RESUMEN

Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Šfor DhaA31 and to 1.26 Šfor DhaA31 complexed with TCP.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Hidrolasas/química , Hidrolasas/genética , Propano/análogos & derivados , Rhodococcus/enzimología , Proteínas Bacterianas/metabolismo , Cristalización , Hidrolasas/metabolismo , Datos de Secuencia Molecular , Propano/química , Propano/metabolismo , Difracción de Rayos X
11.
Artículo en Inglés | MEDLINE | ID: mdl-21301099

RESUMEN

Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Šresolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Šresolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas/química , Hidrolasas/metabolismo , 2-Propanol , Catálisis , Cristalización , Cristalografía por Rayos X/métodos , Hidrolasas/genética , Hidrólisis , Isoenzimas/química , Isoenzimas/genética , Ligandos , Propano/análogos & derivados , Rhodococcus/enzimología , Rhodococcus/genética , Difracción de Rayos X
12.
J Mol Biol ; 392(5): 1339-56, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19577578

RESUMEN

Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.


Asunto(s)
Hidrolasas/química , Hidrolasas/metabolismo , Propano/análogos & derivados , Alcoholes/metabolismo , Animales , Cloruros/metabolismo , Hidrolasas/genética , Cinética , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Propano/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agua/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-18259069

RESUMEN

The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 A, respectively.


Asunto(s)
Proteínas Bacterianas/química , Rhodococcus/química , Proteínas Bacterianas/genética , Secuencia de Bases , Cristalización , Cristalografía por Rayos X , Cartilla de ADN , Mutación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...