Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 8(8): 7648-54, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24953976

RESUMEN

Individual fullerene nanoparticles are detected and sized in a non-aqueous solution via cathodic particle coulometry where the direct, quantitative reduction of single nanoparticles is achieved upon collision with a potentiostated gold electrode. This is the first time that the nanoparticle impact technique has been shown to work in a non-aqueous electrolyte and utilized to coulometrically size carbonaceous nanoparticles. Contrast is drawn between single-nanoparticle electrochemistry and that seen using nanoparticle ensembles via modified electrodes.

2.
Phys Chem Chem Phys ; 16(2): 616-23, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24247993

RESUMEN

This perspective summarises four different electrochemical techniques that have been established and frequently used to characterize various properties of silver nanoparticles. These are based on drop casting (I), in situ nanoparticle sticking and stripping (II), transfer sticking and stripping (III) or nanoparticle impacts (IV). The specific characteristics of the different methodologies are explained and contrasted with each other with the focus being on the respective benefits and limitations together with essential insights for experimentalists.

3.
ChemistryOpen ; 2(2): 69-75, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24551537

RESUMEN

Anodic particle coloumetry is used to size silver nanoparticles impacting a carbon microelectrode in a potassium chloride/citrate solution. Besides their size, their agglomeration state in solution is also investigated solely by electrochemical means and subsequent data analysis. Validation of this new approach to nanoparticle agglomeration studies is performed by comparison with the results of a commercially available nanoparticle tracking analysis system, which shows excellent agreement. Moreover, it is demonstrated that the electrochemical technique has the advantage of directly yielding the number of atoms per impacting nanoparticle irrespective of its shape. This is not true for the optical nanoparticle tracking system, which requires a correction for the nonspherical shape of agglomerated nanoparticles to derive reasonable information on the agglomeration state.

4.
Phys Chem Chem Phys ; 13(28): 12755-7, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21655613

RESUMEN

Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude.

5.
Phys Chem Chem Phys ; 13(22): 10818-22, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21556440

RESUMEN

Electrochemistry and electrocatalysis on carbon nanomaterials is at the forefront of research. The presence of carbonaceous and metallic impurities within carbon nanotubes (CNTs) is a persistent problem. Here we show that the electrochemistry of the entire group of hydrazine compounds is governed by impurities within single-walled, double-walled and few-walled CNTs. The oxidation of organic substituted hydrazines at CNTs is driven by nanographitic impurities, in contrast to unsubstituted hydrazine, for which the electrochemistry is driven by metallic impurities within CNTs. This finding is unexpected, as one would assume that a whole group of compounds would be susceptible to "electrocatalysis" by only one type of impurity. This discovery should be taken into account when predicting the susceptibility of whole groups of compounds to electrocatalysis by metallic or nanographitic impurities. Our findings have strong implications on the electrochemical sensing of hydrazines and on the use of hydrazines as fuels for nanomotors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA