Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2816: 101-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977592

RESUMEN

Members of the Rho family of small monomeric GTPases regulate a plethora of critical cellular functions including gene expression, cell cycle progression, and the dynamic modeling of the actin cytoskeleton. Diversity among Rho family members is derived, in part, from variations in their subcellular distribution. Localization of newly synthesized (naïve) Rho proteins to target subcellular compartments is largely governed by lipid modifications, including posttranslational prenylation. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semiquantitatively evaluate the functional consequence of posttranslational prenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational prenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.


Asunto(s)
Malla Trabecular , Humanos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Células Cultivadas , Terpenos/metabolismo , Prenilación de Proteína , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Procesamiento Proteico-Postraduccional
2.
Exp Eye Res ; 240: 109813, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331016

RESUMEN

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Asunto(s)
Exosomas , Glaucoma , Disco Óptico , Ratas , Animales , Disco Óptico/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Astrocitos/metabolismo , Exosomas/metabolismo , Gliosis/metabolismo , Glaucoma/metabolismo , Elastina/genética , Inflamación/metabolismo
3.
Methods Mol Biol ; 2625: 217-230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653646

RESUMEN

Small monomeric GTPases, including those belonging to the Rho family, regulate a diverse array of intracellular signaling pathways which affect vesicle transport/trafficking, endocytosis, cell cycle progression, cell contractility, and formation of stress fibers or focal adhesions. Functional activation of newly synthesized small monomeric GTPases is facilitated by a multi-step posttranslational process involving transferase-catalyzed addition of farnesyl or geranylgeranyl isoprenoids to conserved cysteine residues within a unique carboxy terminal -CaaX motif. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semi-quantitatively evaluate the functional consequence of posttranslational isoprenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational isoprenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Malla Trabecular , Animales , Humanos , Malla Trabecular/metabolismo , Prenilación de Proteína , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Mamíferos/metabolismo
4.
Behav Brain Res ; 433: 113998, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35809692

RESUMEN

Repetitive mild traumatic brain injury (rmTBI) results in a myriad of symptoms, including vestibular impairment. The mechanisms underlying vestibular dysfunction in rmTBI patients remain poorly understood. Concomitantly, acute hypogonadism occurs following TBI and can persist chronically in many patients. Using a repetitive mild closed-head animal model of TBI, the role of testosterone on vestibular function was tested. Male Long Evans Hooded rats were randomly divided into sham or rmTBI groups. Significant vestibular deficits were observed both acutely and chronically in the rmTBI groups. Systemic testosterone was administered after the development of chronic vestibular dysfunction. rmTBI animals given testosterone showed improved vestibular function that was sustained for 175 days post-rmTBI. Significant vestibular neuronal cell loss was, however, observed in the rmTBI animals compared to Sham animals at 175 days post-rmTBI and testosterone treatment significantly improved vestibular neuronal survival. Taken together, these data demonstrate a critical restorative role of testosterone in vestibular function following rmTBI. This study has important clinical implications because it identifies testosterone treatment as a viable therapeutic strategy for the long-term recovery of vestibular function following TBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Animales , Conmoción Encefálica/complicaciones , Conmoción Encefálica/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Long-Evans , Testosterona/farmacología
5.
Invest Ophthalmol Vis Sci ; 62(4): 4, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33821883

RESUMEN

Purpose: The multifunctional profibrotic cytokine TGF-ß2 is implicated in the pathophysiology of primary open angle glaucoma (POAG). While the underlying cause of POAG remains unclear, TGF-ß2 dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Mitochondrial-targeted antioxidants have been recently shown by our group to markedly attenuate TGF-ß2 profibrotic responses, strongly implicating oxidative stress as a key facilitator of TGF-ß2 signaling in human TM cells. In this study, we determined the mechanism by which oxidative stress facilitates TGF-ß2 profibrotic responses in cultured primary human TM cells. Methods: Semiconfluent cultures of primary or transformed human TM cells were conditioned overnight in serum-free media and subsequently challenged without or with TGF-ß2 (5 ng/mL). Relative changes in the mRNA content of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) isoforms, connective tissue growth factor (CTGF), collagen 1α1 and 4α1 isoforms or relative changes in the protein content of Nox4, phospho- and total-Smad2 and -Smad3, collagens I and IV were determined in the absence or presence of GKT137831, a Nox1-Nox4 dual enzyme inhibitor, and quantified by real-time qPCR or by immunoblot, respectively. Relative in situ changes in collagens I and IV and in alpha smooth muscle actin (αSMA) were semiquantified by immunocytochemistry, whereas relative changes in filamentous actin stress fiber formation was semiquantified by phalloidin staining. Results: Quiescent primary human TM cells cultured in the presence of TGF-ß2 exhibited a marked selective increase in endogenous Nox4 mRNA and Nox4 protein expression. Actinomycin D prevented TGF-ß2 mediated increases in Nox4 mRNA expression. TM cells reverse transfected with siRNA against Smad3 prevented TGF-ß2 mediated increases in Nox4 mRNA expression. Pre-incubating TM cells with GKT137831 attenuated TGF-ß2 mediated increases in intracellular reactive oxygen species (ROS), in COL1A1, COL4A1, and CTGF mRNA expression, in Smad3 protein phosphorylation, in collagens I, collagens IV, and αSMA protein expression, and in filamentous actin stress fiber formation. Conclusions: TGF-ß2 promotes oxidative stress in primary human TM cells by selectively increasing expression of NADPH oxidase 4. Dysregulation of redox equilibrium by induction of NADPH oxidase 4 expression appears to be a key early event involved in the pathologic profibrotic responses elicited by TGF-ß2 canonical signaling, including ECM remodeling, filamentous actin stress fiber formation, and αSMA expression. Selective inhibition of Nox4 expression/activation, in combination with mitochondrial-targeted antioxidants, represents a novel strategy by which to slow the progression of TGF-ß2 elicited profibrotic responses within the TM.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glaucoma de Ángulo Abierto/genética , NADPH Oxidasa 4/genética , Estrés Oxidativo/genética , ARN Mensajero/genética , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Humor Acuoso/metabolismo , Western Blotting , Células Cultivadas , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/metabolismo , Humanos , NADPH Oxidasa 4/biosíntesis , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Malla Trabecular/patología
6.
Exp Neurol ; 331: 113385, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562668

RESUMEN

Healthy peripheral nerves encounter, with increased frequency, numerous chemical, biological, and biomechanical forces. Over time and with increasing age, these forces collectively contribute to the pathophysiology of a spectrum of traumatic, metabolic, and/or immune-mediated peripheral nerve disorders. The blood-nerve barrier (BNB) serves as a critical first-line defense against chemical and biologic insults while biomechanical forces are continuously buffered by a dense array of longitudinally orientated epineural collagen fibers exhibiting high-tensile strength. As emphasized throughout this Experimental Neurology Special Issue, the BNB is best characterized as a functionally dynamic multicellular vascular unit comprised of not only highly specialized endoneurial endothelial cells, but also associated perineurial cells, pericytes, Schwann cells, basement membrane, and invested axons. The composition of the BNB, while anatomically distinct, is not functionally dissimilar to that of the well characterized neurovascular unit of the central nervous system. While the BNB lacks a glial limitans and an astrocytic endfoot layer, the primary function of both vascular units is to establish, maintain, and protect an optimal endoneurial (PNS) or interstitial (CNS) fluid microenvironment that is vital for proper neuronal function. Altered endoneurial homeostasis as a secondary consequence of BNB dysregulation is considered an early pathological event in the course of a variety of traumatic, immune-mediated, or metabolically acquired peripheral neuropathies. In this review, emerging experimental advancements targeting the endoneurial microvasculature for the therapeutic management of immune-mediated inflammatory peripheral neuropathies, including the AIDP variant of Guillain-Barré syndrome, are discussed.


Asunto(s)
Barrera Hematonerviosa , Enfermedades del Sistema Nervioso Periférico/inmunología , Enfermedades del Sistema Nervioso Periférico/patología , Animales , Humanos
7.
Antioxidants (Basel) ; 9(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316287

RESUMEN

Optic nerve head astrocytes are the specialized glia cells that provide structural and trophic support to the optic nerve head. In response to cellular injury, optic nerve head astrocytes undergo reactive astrocytosis, the process of cellular activation associated with cytoskeletal remodeling, increases in the rate of proliferation and motility, and the generation of Reactive Oxygen Species. Antioxidant intervention has previously been proposed as a therapeutic approach for glaucomatous optic neuropathy, however, little is known regarding the response of optic nerve head astrocytes to antioxidants under physiological versus pathological conditions. The goal of this study was to determine the effects of three different antioxidants, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), resveratrol and xanthohumol in primary optic nerve head astrocytes. Effects on the expression of the master regulator nuclear factor erythroid 2-related factor 2 (Nrf2), the antioxidant enzyme, manganese-dependent superoxide dismutase 2 (SOD2), and the pro-oxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), were determined by quantitative immunoblotting. Furthermore, efficacy in preventing chemically and reactive astrocytosis-induced increases in cellular oxidative stress was quantified using cell viability assays. The results were compared to the effects of the prototypic antioxidant, Trolox. Antioxidants elicited highly differential changes in the expression levels of Nrf2, SOD2, and NOX4. Notably, Mn-TM-2-PyP increased SOD2 expression eight-fold, while resveratrol increased Nrf2 expression three-fold. In contrast, xanthohumol exerted no statistically significant changes in expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and lactate dehydrogenase (LDH) release assays were performed to assess cell viability after chemically and reactive astrocytosis-induced oxidative stress. Mn-TM-2-PyP exerted the most potent glioprotection by fully preventing the loss of cell viability, whereas resveratrol and xanthohumol partially restored cell viability. Our data provide the first evidence for a well-developed antioxidant defense system in optic nerve head astrocytes, which can be pharmacologically targeted by different classes of antioxidants.

8.
Invest Ophthalmol Vis Sci ; 60(10): 3613-3624, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433458

RESUMEN

Purpose: POAG is a progressive optic neuropathy that is currently the leading cause of irreversible blindness worldwide. While the underlying cause of POAG remains unclear, TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Early studies have also demonstrated markedly elevated levels of oxidative stress markers in AH from POAG patients along with altered expression of antioxidant defenses. Here, using cultured primary or transformed human TM cells, we investigated the role oxidative stress plays at regulating TGF-ß2-mediated remodeling of the ECM. Methods: Primary or transformed (GTM3) human TM cells conditioned in serum-free media were incubated in the absence or presence of TGF-ß2 and relative changes in intracellular reactive oxygen species (ROS) were measured using oxidation-sensitive fluorogenic dyes CellROX green or 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA). TGF-ß2-mediated changes in the content of connective tissue growth factor (CTGF) and collagen types 1α1 (COL1A1) and 4α1 (COL4A1) mRNA or collagens I and IV isoform proteins were determined in the absence or presence of mitochondrial-targeted antioxidants (XJB-5-131 or MitoQ) and quantified by quantitative PCR or by immunoblot and immunocytochemistry. Smad-dependent canonic signaling was determined by immunoblot, whereas Smad-dependent transcriptional activity was quantified using a Smad2/3-responsive SBE-luciferase reporter assay. Results: Primary or transformed human TM cells cultured in the presence of TGF-ß2 (5 ng/mL; 2 hours) exhibited marked increases in CellROX or fluorescein fluorescence. Consistent with previous reports, challenging cultured human TM cells with TGF-ß2 elicited measurable increases in regulated Smad2/3 signaling as well as increases in CTGF, COL1A1, and COL4A1 mRNA and collagen protein content. Pretreating human TM cells with mitochondrial-targeted antioxidants XJB-5-131 (10 µM) or MitoQ (10 nM) attenuated TGF-ß2-mediated changes in Smad-dependent transcriptional activity. Conclusions: The multifunctional profibrotic cytokine TGF-ß2 elicits a marked increase in oxidative stress in human TM cells. Mitochondrial-targeted antioxidants attenuate TGF-ß2-mediated changes in Smad-dependent transcriptional activity, including marked reductions in CTGF and collagen isoform gene and protein expression. These findings suggest that mitochondrial-targeted antioxidants, when delivered directly to the TM, exhibit potential as a novel strategy by which to slow the progression of TGF-ß2-mediated remodeling of the ECM within the TM.


Asunto(s)
Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Transducción de Señal/fisiología , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/metabolismo , Línea Celular Transformada , Células Cultivadas , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo IV/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Óxidos N-Cíclicos/farmacología , Humanos , Immunoblotting , Inmunohistoquímica , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Malla Trabecular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
9.
Front Neurosci ; 13: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804739

RESUMEN

Rationale: Physical exercise is an essential adjunct to the management of patients with type 2 diabetes mellitus. Therapeutic interventions that improve blood flow to peripheral nerves, such as exercise, may slow the progression of neuropathy in the diabetic patient. Aims: This randomized clinical trial was conducted to determine whether a structured program of aerobic, isokinetic strength, or the combination of aerobic-isokinetic strength exercise intervention alters peripheral nerve function in glycemic-controlled diabetic patients with advanced length-dependent distal symmetric polyneuropathy. Methods: Forty-five patients with type 2 diabetes mellitus exhibiting tight glycemic control (HbA1c intergroup range 7.2-8.0%) were randomized by block design across four experimental groups: sedentary controls (n = 12), aerobic exercise (n = 11), isokinetic strength (n = 11), or the combination of aerobic-isokinetic strength training (n = 11). Patients randomized to training groups exercised 3× per week for 12 weeks, whereas patients randomized to the sedentary control group received standard of care. To minimize attention and educational bias, all patients attended a 12-session health promotion educational series. At baseline, immediately following intervention, and again at 12-week post-intervention, detailed nerve conduction studies were conducted as a primary outcome measure. At these same intervals, all patients completed as secondary measures quantitative sensory testing, symptom-limited treadmill stress tests, and a Short-Form 36-Veterans Questionnaire (SF-36V). Results: Of the 45 patients randomized into this study, 37 (82%) had absent sural nerve responses, 19 (42%) had absent median sensory nerve responses, and 17 (38%) had absent ulnar sensory nerve responses. By comparison, responses from tibial nerves were absent in only three (7%) subjects while responses from peroneal nerves were absent in five (11%) subjects. Eleven (92%) of 12 patients that had volunteered to be biopsied exhibited abnormal levels of epidermal nerve fiber densities. Exercise, regardless of type, did not alter sensory or motor nerve electrodiagnostic findings among those patients exhibiting measurable responses (ANOVA). There was, however, a modest (p = 0.01) beneficial effect of exercise on sensory nerve function (Fisher's Exact Test). Importantly, the beneficial effect of exercise on sensory nerve function was enhanced (p = 0.03) during the post-intervention interval. In addition, three of six patients that had undergone exercise intervention exhibited a marked 1.9 ± 0.3-fold improvement in epidermal nerve fiber density. By comparison, none of three sedentary patients whom agreed to be biopsied a second time showed improvement in epidermal nerve fiber density. Compared to baseline values within groups, and compared with sedentary values across groups, neither aerobic, isokinetic strength, or the combination of aerobic-isokinetic strength exercise intervention altered peak oxygen uptake. Patients that underwent aerobic or the combined aerobic-isokinetic strength exercise intervention, however, demonstrated an increase in treadmill test duration that was sustained over the 12-week post-intervention period. Conclusion: A 12-week course of physical exercise, regardless of type, does not alter sensory or motor nerve electrodiagnostic findings. In a subset of patients, a short-term structured program of aerobic exercise may selectively improve sensory nerve fiber function. Large-scale exercise lifestyle intervention trials are warranted to further evaluate the impact of aerobic exercise on sensory nerve fiber function in diabetic neuropathic patients. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT00955201.

10.
Exp Eye Res ; 171: 164-173, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29526795

RESUMEN

Cultured trabecular meshwork (TM) cells are a valuable model system to study the cellular mechanisms involved in the regulation of conventional outflow resistance and thus intraocular pressure; and their dysfunction resulting in ocular hypertension. In this review, we describe the standard procedures used for the isolation of TM cells from several animal species including humans, and the methods used to validate their identity. Having a set of standard practices for TM cells will increase the scientific rigor when used as a model, and enable other researchers to replicate and build upon previous findings.


Asunto(s)
Técnicas de Cultivo de Célula , Separación Celular/métodos , Guías como Asunto , Malla Trabecular/citología , Factores de Edad , Animales , Biomarcadores/metabolismo , Consenso , Feto , Humanos , Donantes de Tejidos , Conservación de Tejido , Recolección de Tejidos y Órganos , Malla Trabecular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA