Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 226(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37816306

RESUMEN

Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.


Asunto(s)
Proteínas del Citoesqueleto , Factores de Transcripción , Humanos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Factores de Transcripción/genética , Calbindinas/metabolismo , Patología Molecular , Encéfalo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014229

RESUMEN

A common way to investigate gene regulatory mechanisms is to identify differentially expressed genes using transcriptomics, find their candidate enhancers using epigenomics, and search for over-represented transcription factor (TF) motifs in these enhancers using bioinformatics tools. A related follow-up task is to model gene expression as a function of enhancer sequences and rank TF motifs by their contribution to such models, thus prioritizing among regulators. We present a new computational tool called SEAMoD that performs the above tasks of motif finding and sequence-to-expression modeling simultaneously. It trains a convolutional neural network model to relate enhancer sequences to differential expression in one or more biological conditions. The model uses TF motifs to interpret the sequences, learning these motifs and their relative importance to each biological condition from data. It also utilizes epigenomic information in the form of activity scores of putative enhancers and automatically searches for the most promising enhancer for each gene. Compared to existing neural network models of non-coding sequences, SEAMoD uses far fewer parameters, requires far less training data, and emphasizes biological interpretability. We used SEAMoD to understand regulatory mechanisms underlying the differentiation of neural stem cell (NSC) derived from mouse forebrain. We profiled gene expression and histone modifications in NSC and three differentiated cell types and used SEAMoD to model differential expression of nearly 12,000 genes with an accuracy of 81%, in the process identifying the Olig2, E2f family TFs, Foxo3, and Tcf4 as key transcriptional regulators of the differentiation process.

3.
bioRxiv ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37205596

RESUMEN

Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2- linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with C-terminal mutations that disrupt both isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2- l target genes. Furthermore, in contrast to C-terminal Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity, a phenotype exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1 -expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.

4.
Dev Biol ; 490: 155-171, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36002036

RESUMEN

GALNT17 encodes a N-acetylgalactosaminyltransferase (GalNAc-T) protein specifically involved in mucin-type O-linked glycosylation of target proteins, a process important for cell adhesion, cell signaling, neurotransmitter activity, neurite outgrowth, and neurite sensing. GALNT17, also known as WBSCR17, is located at the edge of the Williams-Beuren Syndrome (WBS) critical region and adjacent to the AUTS2 locus, genomic regions associated with neurodevelopmental phenotypes that are thought to be co-regulated. Although previous data have implicated Galnt17 in neurodevelopment, the in vivo functions of this gene have not been investigated. In this study, we have analyzed behavioral, brain pathology, and molecular phenotypes exhibited by Galnt17 knockout (Galnt17-/-) mice. We show that Galnt17-/- mutants exhibit developmental neuropathology within the cerebellar vermis, along with abnormal activity, coordination, and social interaction deficits. Transcriptomic and protein analysis revealed reductions in both mucin type O-glycosylation and heparan sulfate synthesis in the developing mutant cerebellum along with disruption of pathways central to neuron differentiation, axon pathfinding, and synaptic signaling, consistent with the mutant neuropathology. These brain and behavioral phenotypes and molecular data confirm a specific role for Galnt17 in brain development and suggest new clues to factors that could contribute to phenotypes in certain WBS and AUTS2 syndrome patients.


Asunto(s)
Vermis Cerebeloso , N-Acetilgalactosaminiltransferasas , Animales , Ratones , Encéfalo/metabolismo , Vermis Cerebeloso/metabolismo , Cerebelo/metabolismo , Mucinas/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Proteínas/metabolismo , Interacción Social , Polipéptido N-Acetilgalactosaminiltransferasa
5.
PLoS One ; 17(2): e0263632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35192674

RESUMEN

Adults of many species will care for young offspring that are not their own, a phenomenon called alloparenting. However, in many cases, nonparental adults must be sensitized by repeated or extended exposures to newborns before they will robustly display parental-like behaviors. To capture neurogenomic events underlying the transition to active parental caring behaviors, we analyzed brain gene expression and chromatin profiles of virgin female mice co-housed with pregnant dams during pregnancy and after birth. After an initial display of antagonistic behaviors and a surge of defense-related gene expression, we observed a dramatic shift in the chromatin landscape specifically in amygdala of the pup-exposed virgin females compared to females co-housed with mother before birth, accompanied by a dampening of anxiety-related gene expression. This epigenetic shift coincided with hypothalamic expression of the oxytocin gene and the emergence of behaviors and gene expression patterns classically associated with maternal care. The results outline a neurogenomic program associated with dramatic behavioral changes and suggest molecular networks relevant to human postpartum mental health.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Conducta Animal/fisiología , Epigénesis Genética , Conducta Materna/fisiología , Proteínas del Tejido Nervioso/genética , Oxitocina/genética , Animales , Animales Recién Nacidos , Ansiedad/psicología , Cromatina/química , Cromatina/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Conducta Materna/psicología , Ratones , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Embarazo , Abstinencia Sexual
6.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238524

RESUMEN

Core histone variants, such as H2A.X and H3.3, serve specialized roles in chromatin processes that depend on the genomic distributions and amino acid sequence differences of the variant proteins. Modifications of these variants alter interactions with other chromatin components and thus the protein's functions. These inferences add to the growing arsenal of evidence against the older generic view of those linker histones as redundant repressors. Furthermore, certain modifications of specific H1 variants can confer distinct roles. On the one hand, it has been reported that the phosphorylation of H1 results in its release from chromatin and the subsequent transcription of HIV-1 genes. On the other hand, recent evidence indicates that phosphorylated H1 may in fact be associated with active promoters. This conflict suggests that different H1 isoforms and modified versions of these variants are not redundant when together but may play distinct functional roles. Here, we provide the first genome-wide evidence that when phosphorylated, the H1.4 variant remains associated with active promoters and may even play a role in transcription activation. Using novel, highly specific antibodies, we generated the first genome-wide view of the H1.4 isoform phosphorylated at serine 187 (pS187-H1.4) in estradiol-inducible MCF7 cells. We observe that pS187-H1.4 is enriched primarily at the transcription start sites (TSSs) of genes activated by estradiol treatment and depleted from those that are repressed. We also show that pS187-H1.4 associates with 'early estrogen response' genes and stably interacts with RNAPII. Based on the observations presented here, we propose that phosphorylation at S187 by CDK9 represents an early event required for gene activation. This event may also be involved in the release of promoter-proximal polymerases to begin elongation by interacting directly with the polymerase or other parts of the transcription machinery. Although we focused on estrogen-responsive genes, taking into account previous evidence of H1.4's enrichment of promoters of pluripotency genes, and its involvement with rDNA activation, we propose that H1.4 phosphorylation for gene activation may be a more global observation.


Asunto(s)
Histonas/genética , Fosforilación/genética , Transcripción Genética , Cromatina/genética , Quinasa 9 Dependiente de la Ciclina/genética , VIH-1/genética , Humanos , Células MCF-7 , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Sitio de Iniciación de la Transcripción , Activación Transcripcional/genética
7.
Proc Natl Acad Sci U S A ; 117(38): 23270-23279, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32661177

RESUMEN

Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.


Asunto(s)
Conducta , Encéfalo/fisiología , Redes Reguladoras de Genes , Animales , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos
8.
PLoS One ; 14(10): e0224287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31639176

RESUMEN

The parental allele specificity of mammalian imprinted genes has been evolutionarily well conserved, although its functional constraints and associated mechanisms are not fully understood. In the current study, we generated a mouse mutant with switched active alleles driving the switch from paternal-to-maternal expression for Peg3 and the maternal-to-paternal expression for Zim1. The expression levels of Peg3 and Zim1, but not the spatial expression patterns, within the brain showed clear differences between wild type and mutant animals. We identified putative enhancers localized upstream of Peg3 that displayed allele-biased DNA methylation, and that also participate in allele-biased chromosomal conformations with regional promoters. Most importantly, these data suggest for the first time that long-distance enhancers may contribute to allelic expression within imprinted domains through allele-biased interactions with regional promoters.


Asunto(s)
Alelos , Elementos de Facilitación Genéticos/genética , Impresión Genómica , Factores de Transcripción de Tipo Kruppel/genética , Animales , Cromosomas de los Mamíferos/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Femenino , Regulación Enzimológica de la Expresión Génica/genética , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/genética
9.
G3 (Bethesda) ; 9(11): 3891-3906, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31554716

RESUMEN

AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.


Asunto(s)
Proteínas del Citoesqueleto/genética , N-Acetilgalactosaminiltransferasas/genética , Factores de Transcripción/genética , Animales , Conducta Animal , Cerebelo/metabolismo , Cerebelo/patología , Proteínas del Citoesqueleto/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Cráneo/anatomía & histología , Síndrome , Factores de Transcripción/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
10.
Genes Brain Behav ; 18(1): e12502, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29968347

RESUMEN

Social challenges like territorial intrusions evoke behavioral responses in widely diverging species. Recent work has showed that evolutionary "toolkits"-genes and modules with lineage-specific variations but deep conservation of function-participate in the behavioral response to social challenge. Here, we develop a multispecies computational-experimental approach to characterize such a toolkit at a systems level. Brain transcriptomic responses to social challenge was probed via RNA-seq profiling in three diverged species-honey bees, mice and three-spined stickleback fish-following a common methodology, allowing fair comparisons across species. Data were collected from multiple brain regions and multiple time points after social challenge exposure, achieving anatomical and temporal resolution substantially greater than previous work. We developed statistically rigorous analyses equipped to find homologous functional groups among these species at the levels of individual genes, functional and coexpressed gene modules, and transcription factor subnetworks. We identified six orthogroups involved in response to social challenge, including groups represented by mouse genes Npas4 and Nr4a1, as well as common modulation of systems such as transcriptional regulators, ion channels, G-protein-coupled receptors and synaptic proteins. We also identified conserved coexpression modules enriched for mitochondrial fatty acid metabolism and heat shock that constitute the shared neurogenomic response. Our analysis suggests a toolkit wherein nuclear receptors, interacting with chaperones, induce transcriptional changes in mitochondrial activity, neural cytoarchitecture and synaptic transmission after social challenge. It shows systems-level mechanisms that have been repeatedly co-opted during evolution of analogous behaviors, thus advancing the genetic toolkit concept beyond individual genes.


Asunto(s)
Evolución Molecular , Genética Conductual/métodos , Genómica/métodos , Conducta Social , Análisis de Sistemas , Animales , Abejas , Encéfalo/metabolismo , Encéfalo/fisiología , Femenino , Redes Reguladoras de Genes , Genoma , Masculino , Ratones , Smegmamorpha , Transcriptoma
11.
Genes Brain Behav ; 18(1): e12509, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30094933

RESUMEN

Social interactions can be divided into two categories, affiliative and agonistic. How neurogenomic responses reflect these opposing valences is a central question in the biological embedding of experience. To address this question, we exposed honey bees to a queen larva, which evokes nursing, an affiliative alloparenting interaction, and measured the transcriptomic response of the mushroom body brain region at different times after exposure. Hundreds of genes were differentially expressed at distinct time points, revealing a dynamic temporal patterning of the response. Comparing these results to our previously published research on agonistic aggressive interactions, we found both shared and unique transcriptomic responses to each interaction. The commonly responding gene set was enriched for nuclear receptor signaling, the set specific to nursing was enriched for olfaction and neuron differentiation, and the set enriched for aggression was enriched for cytoskeleton, metabolism, and chromosome organization. Whole brain histone profiling after the affiliative interaction revealed few changes in chromatin accessibility, suggesting that the transcriptomic changes derive from already accessible areas of the genome. Although only one stimulus of each type was studied, we suggest that elements of the observed transcriptomic responses reflect molecular encoding of stimulus valence, thus priming individuals for future encounters. This hypothesis is supported by behavioral analyses showing that bees responding to either the affiliative or agonistic stimulus exhibited a higher probability of repeating the same behavior but a lower probability of performing the opposite behavior. These findings add to our understanding of the biological embedding at the molecular level.


Asunto(s)
Conducta Agonística , Abejas/genética , Conducta Cooperativa , Transcriptoma , Animales , Abejas/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Aprendizaje
12.
Dev Biol ; 446(2): 180-192, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594504

RESUMEN

The evolutionarily conserved transcription factor, Tbx18, is expressed in a dynamic pattern throughout embryonic and early postnatal life and plays crucial roles in the development of multiple organ systems. Previous studies have indicated that this dynamic function is controlled by an expansive regulatory structure, extending far upstream and downstream of the gene. With the goal of identifying elements that interact with the Tbx18 promoter in developing prostate, we coupled chromatin conformation capture (4C) and ATAC-seq from embryonic day 18.5 (E18.5) mouse urogenital sinus (UGS), where Tbx18 is highly expressed. The data revealed dozens of active chromatin elements distributed throughout a 1.5 million base pair topologically associating domain (TAD). To identify cell types contributing to this chromatin signal, we used lineage tracing methods with a Tbx18 Cre "knock-in" allele; these data show clearly that Tbx18-expressing precursors differentiate into wide array of cell types in multiple tissue compartments, most of which have not been previously reported. We also used a 209 kb Cre-expressing Tbx18 transgene, to partition enhancers for specific precursor types into two rough spatial domains. Within this central 209 kb compartment, we identified ECR1, previously described to regulate Tbx18 expression in ureter, as an active regulator of UGS expression. Together these data define the diverse fates of Tbx18+ precursors in prostate-associated tissues for the first time, and identify a highly active TAD controlling the gene's essential function in this tissue.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Próstata/metabolismo , Elementos Reguladores de la Transcripción/genética , Proteínas de Dominio T Box/genética , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Próstata/citología , Próstata/embriología , Proteínas de Dominio T Box/metabolismo , Sistema Urogenital/citología , Sistema Urogenital/embriología , Sistema Urogenital/metabolismo
13.
PLoS One ; 12(11): e0187611, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29161290

RESUMEN

The application of complex network modeling to analyze large co-expression data sets has gained traction during the last decade. In particular, the use of the weighted gene co-expression network analysis framework has allowed an unbiased and systems-level investigation of genotype-phenotype relationships in a wide range of systems. Since mouse is an important model organism for biomedical research on human disease, it is of great interest to identify similarities and differences in the functional roles of human and mouse orthologous genes. Here, we develop a novel network comparison approach which we demonstrate by comparing two gene-expression data sets from a large number of human and mouse tissues. The method uses weighted topological overlap alongside the recently developed network-decomposition method of s-core analysis, which is suitable for making gene-centrality rankings for weighted networks. The aim is to identify globally central genes separately in the human and mouse networks. By comparing the ranked gene lists, we identify genes that display conserved or diverged centrality-characteristics across the networks. This framework only assumes a single threshold value that is chosen from a statistical analysis, and it may be applied to arbitrary network structures and edge-weight distributions, also outside the context of biology. When conducting the comparative network analysis, both within and across the two species, we find a clear pattern of enrichment of transcription factors, for the homeobox domain in particular, among the globally central genes. We also perform gene-ontology term enrichment analysis and look at disease-related genes for the separate networks as well as the network comparisons. We find that gene ontology terms related to regulation and development are generally enriched across the networks. In particular, the genes FOXE3, RHO, RUNX2, ALX3 and RARA, which are disease genes in either human or mouse, are on the top-10 list of globally central genes in the human and mouse networks.


Asunto(s)
Regulación de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Distribución Tisular/genética , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Factores de Transcripción Forkhead/biosíntesis , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Proteínas de Homeodominio/biosíntesis , Humanos , Ratones , Receptor alfa de Ácido Retinoico/biosíntesis , Homología de Secuencia
14.
PLoS Genet ; 13(7): e1006840, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704398

RESUMEN

Animals exhibit dramatic immediate behavioral plasticity in response to social interactions, and brief social interactions can shape the future social landscape. However, the molecular mechanisms contributing to behavioral plasticity are unclear. Here, we show that the genome dynamically responds to social interactions with multiple waves of transcription associated with distinct molecular functions in the brain of male threespined sticklebacks, a species famous for its behavioral repertoire and evolution. Some biological functions (e.g., hormone activity) peaked soon after a brief territorial challenge and then declined, while others (e.g., immune response) peaked hours afterwards. We identify transcription factors that are predicted to coordinate waves of transcription associated with different components of behavioral plasticity. Next, using H3K27Ac as a marker of chromatin accessibility, we show that a brief territorial intrusion was sufficient to cause rapid and dramatic changes in the epigenome. Finally, we integrate the time course brain gene expression data with a transcriptional regulatory network, and link gene expression to changes in chromatin accessibility. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction.


Asunto(s)
Conducta Animal/fisiología , Plasticidad Neuronal/genética , Smegmamorpha/genética , Conducta Social , Transcripción Genética , Animales , Evolución Biológica , Cerebro/fisiología , Cromatina/genética , Diencéfalo/fisiología , Epigenómica , Genoma , Análisis de Secuencia de ARN , Smegmamorpha/fisiología , Factores de Transcripción/genética
15.
Genome Res ; 27(6): 959-972, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28356321

RESUMEN

Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Receptores de Estrógenos/genética , Estrés Psicológico/genética , Factores de Transcripción/genética , Conducta Agonística , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Cromatina/ultraestructura , Metabolismo Energético/genética , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Masculino , Ratones , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Unión Proteica , Receptores de Estrógenos/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Factores de Transcripción/metabolismo , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
17.
Oncotarget ; 7(45): 72571-72592, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27732952

RESUMEN

Mammalian genomes contain hundreds of genes transcribed by RNA Polymerase III (Pol III), encoding noncoding RNAs and especially the tRNAs specialized to carry specific amino acids to the ribosome for protein synthesis. In addition to this well-known function, tRNAs and their genes (tDNAs) serve a variety of other critical cellular functions. For example, tRNAs and other Pol III transcripts can be cleaved to yield small RNAs with potent regulatory activities. Furthermore, from yeast to mammals, active tDNAs and related "extra-TFIIIC" (ETC) loci provide the DNA scaffolds for the most ancient known mechanism of three-dimensional chromatin architecture. Here we identify the ZSCAN5 TF family - including mammalian ZSCAN5B and its primate-specific paralogs - as proteins that occupy mammalian Pol III promoters and ETC sites. We show that ZSCAN5B binds with high specificity to a conserved subset of Pol III genes in human and mouse. Furthermore, primate-specific ZSCAN5A and ZSCAN5D also bind Pol III genes, although ZSCAN5D preferentially localizes to MIR SINE- and LINE2-associated ETC sites. ZSCAN5 genes are expressed in proliferating cell populations and are cell-cycle regulated, and siRNA knockdown experiments suggested a cooperative role in regulation of mitotic progression. Consistent with this prediction, ZSCAN5A knockdown led to increasing numbers of cells in mitosis and the appearance of cells. Together, these data implicate the role of ZSCAN5 genes in regulation of Pol III genes and nearby Pol II loci, ultimately influencing cell cycle progression and differentiation in a variety of tissues.


Asunto(s)
Cromatina/metabolismo , ARN Polimerasa III/genética , Factores de Transcripción TFIII/genética , Animales , Ciclo Celular/fisiología , Progresión de la Enfermedad , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Mitosis/fisiología , ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/metabolismo , Transcripción Genética , Transfección
18.
PLoS One ; 11(4): e0154413, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27120339

RESUMEN

The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Próstata/metabolismo , Células del Estroma/metabolismo , Proteínas de Dominio T Box/genética , Alelos , Animales , Comunicación Celular , Diferenciación Celular , Proliferación Celular , Conductos Eyaculadores/crecimiento & desarrollo , Conductos Eyaculadores/metabolismo , Conductos Eyaculadores/patología , Embrión de Mamíferos , Perfilación de la Expresión Génica , Masculino , Ratones , Músculo Liso/crecimiento & desarrollo , Músculo Liso/patología , Miocitos del Músculo Liso/patología , Organogénesis/genética , Próstata/crecimiento & desarrollo , Próstata/patología , Transducción de Señal , Células del Estroma/patología , Proteínas de Dominio T Box/deficiencia , Uréter/crecimiento & desarrollo , Uréter/metabolismo , Uréter/patología
19.
Mol Endocrinol ; 29(6): 882-95, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25875046

RESUMEN

Progesterone, acting through the progesterone receptors (PGRs), is one of the most critical regulators of endometrial differentiation, known as decidualization, which is a key step toward the establishment of pregnancy. Yet a long-standing unresolved issue in uterine biology is the precise roles played by the major PGR isoforms, PGR-A and PGR-B, during decidualization in the human. Our approach, expressing PGR-A and PGR-B individually after silencing endogenous PGRs in human endometrial stromal cells (HESCs), enabled the analysis of the roles of these isoforms separately as well as jointly. Chromatin immunoprecipitation-sequencing in combination with gene expression profiling revealed that PGR-B controls a substantially larger cistrome and transcriptome than PGR-A during HESC differentiation. Interestingly, PGR-B directly regulates the expression of PGR-A. De novo motif analysis indicated that, although the 2 isoforms bind to the same DNA sequence motif, there are both common and unique neighboring motifs where other transcription factors, such as FOSL1/2, JUN, C/EBPß, and STAT3, bind and dictate the transcriptional activities of these isoforms. We found that PGR-A and PGR-B regulate overlapping as well as distinct sets of genes, many of which are known to be critical for decidualization and establishment of pregnancy. When PGR-A and PGR-B were coexpressed during HESC differentiation, PGR-B played a predominant role, although both isoforms influenced each other's transcriptional activity. This study revealed the gene networks that operate downstream of each PGR isoform to mediate critical functions, such as regulation of the cell cycle, angiogenesis, lysosomal activation, insulin receptor signaling, and apoptosis, during decidualization in the human.


Asunto(s)
Decidua/metabolismo , Receptores de Progesterona/metabolismo , Secuencia de Bases , Sitios de Unión , Ciclo Celular , Diferenciación Celular , Células/citología , Decidua/irrigación sanguínea , Decidua/citología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Datos de Secuencia Molecular , Neovascularización Fisiológica , Motivos de Nucleótidos/genética , Embarazo , Unión Proteica , Isoformas de Proteínas/metabolismo , Reproducibilidad de los Resultados
20.
Proc Natl Acad Sci U S A ; 111(50): 17929-34, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453090

RESUMEN

Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.


Asunto(s)
Abejas/fisiología , Evolución Biológica , Encéfalo/fisiología , Smegmamorpha/fisiología , Conducta Social , Territorialidad , Animales , Secuencia de Bases , Abejas/genética , Cartilla de ADN/genética , Metabolismo Energético/fisiología , Genómica/métodos , Inmunohistoquímica , Ratones , Microscopía Fluorescente , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Transducción de Señal/fisiología , Smegmamorpha/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...