Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005434

RESUMEN

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomics resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomics resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as critical models for understanding widespread genomic characteristics, including evolutionary genome expansions and contractions given they have the largest range in genome sizes of any animal taxon and multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The advent of long-read sequencing technologies, along with computational techniques that enhance scaffolding capabilities and streamline computational workload is now enabling the ability to overcome some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC) in early 2023. This burgeoning community already has more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and outline how the AGC can enable amphibian genomics research to "leap" to the next level.

2.
Mol Ecol ; 33(14): e17438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923007

RESUMEN

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.


Asunto(s)
Mimetismo Biológico , Fenotipo , Pigmentación , Animales , Mimetismo Biológico/genética , Pigmentación/genética , Genómica , Ranidae/genética , Ranidae/crecimiento & desarrollo , Genoma/genética , Evolución Biológica , Selección Genética , Anuros/genética , Anuros/crecimiento & desarrollo
3.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874406

RESUMEN

Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).


Asunto(s)
Pigmentación , Ranas Venenosas , Animales , Mimetismo Biológico/genética , Melaninas/biosíntesis , Pigmentación/genética , Ranas Venenosas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA