Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37754871

RESUMEN

New biocements based on a powdered mixture of calcium phosphate/monetite (TTCPM) modified with the addition of honey were prepared by mixing the powder and honey liquid components at a non-cytotoxic concentration of honey (up to 10% (w/v)). The setting process of the cements was not affected by the addition of honey, and the setting time of ~4 min corresponded to the fast setting calcium phosphate cements (CPCs). The cement powder mixture was completely transformed into calcium-deficient nanohydroxyapatite after 24 h of hardening in a simulated body fluid, and the columnar growth of long, needle-like nanohydroxyapatite particles around the original calcium phosphate particles was observed in the honey cements. The compressive strength of the honey cements was reduced with the content of honey in the cement. Comparable antibacterial activities were found for the cements with honey solutions on Escherichia coli, but very low antibacterial activities were found for Staphylococcus aureus for all the cements. The enhanced antioxidant inhibitory activity of the composite extracts was verified. In vitro cytotoxicity testing verified the non-cytotoxic nature of the honey cement extracts, and the addition of honey promoted alkaline phosphatase activity, calcium deposit production, and the upregulation of osteogenic genes (osteopontin, osteocalcin, and osteonectin) by mesenchymal stem cells, demonstrating the positive synergistic effect of honey and CPCs on the bioactivity of cements that could be promising therapeutic candidates for the repair of bone defects.

2.
Materials (Basel) ; 15(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431697

RESUMEN

The effect of nanosilica on the microstructure setting process of tetracalcium phosphate/nanomonetite calcium phosphate cement mixture (CPC) with the addition of 5 wt% of magnesium pyrophosphate (assigned as CT5MP) and osteogenic differentiation of mesenchymal stem cells cultured in cement extracts were studied. A more compact microstructure was observed in CT5MP cement with 0.5 wt% addition of nanosilica (CT5MP1Si) due to the synergistic effect of Mg2P2O7 particles, which strengthened the cement matrix and nanosilica, which supported gradual growth and recrystallization of HAP particles to form compact agglomerates. The addition of 0.5 wt% of nanosilica to CT5MP cement caused an increase in CS from 18 to 24 MPa while the setting time increased almost twofold. It was verified that adding nanosilica to CPC cement, even in a low amount (0.5 and 1 wt% of nanosilica), positively affected the injectability of cement pastes and differentiation of cells with upregulation of osteogenic markers in cells cultured in cement extracts. Results revealed appropriate properties of these types of cement for filling bone defects.

3.
Materials (Basel) ; 15(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35407918

RESUMEN

Magnesium pyrophosphate modified tetracalcium phosphate/monetite cement mixtures (MgTTCPM) were prepared by simple mechanical homogenization of compounds in a ball mill. The MgP2O7 was chosen due to the suitable setting properties of the final cements, in contrast to cements with the addition of amorphous (Ca, Mg) CO3 or newberite, which significantly extended the setting time even in small amounts (corresponding ~to 1 wt% of Mg in final cements). The results showed the gradual dissolution of the same amount of Mg2P2O7 phase, regardless of its content in the cement mixtures, and the refinement of formed HAP nanoparticles, which were joined into weakly and mutually bound spherical agglomerates. The compressive strength of composite cements was reduced to 14 MPa and the setting time was 5-10 min depending on the composition. Cytotoxicity of cements or their extracts was not detected and increased proliferative activity of mesenchymal stem cells with upregulation of osteopontin and osteonectin genes was verified in cells cultured for 7 and 15 days in cement extracts. The above facts, including insignificant changes in the pH of simulated body fluid solution and mechanical strength close to cancellous bone, indicate that MgTTCPM cement mixtures could be suitable biomaterials for use in the treatment of bone defects.

4.
J Biomed Mater Res B Appl Biomater ; 110(3): 668-678, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34569694

RESUMEN

The powdered cement tetracalcium phosphate/monetite/silk fibroin composite (CFIB) was prepared by simple mechanical milling of tetracalcium phosphate/monetite powder mixture with fibrous soluble silk fibroin (SF). The powder composite cement mixtures contained 5 and 10 wt % of SF and 2% NaH2 PO4 solution with 0.1% genipin was used as a liquid component. The setting time of CFIB cement increased with addition of SF from 5 to 25 min in fully injectable cement with 10 wt % of SF. The compressive strength of hardened composites was reduced to 14 MPa which is close to strength of cancellous bone. The 8% of SF from origin amount in CFIB composites was only desorbed from cements after 7 days soaking in simulated body fluid (SBF). It was found almost full transformation of calcium phosphate components in composite to rod-like nanohydroxyapatite after hardening of CFIB cements in SBF. The SF in hardened cements was present in fine globular form after dissolution, actively affected the fluidity of pastes, morphology of hydroxyapatite particles, and microstructure. The excellent cell proliferation and a high over expression of osteogenic gene markers in MSCs were confirmed after the long-time cultivation in CFIB10 cement extract. Injectable CFIB10 cements have appropriate properties for utilization in bone defect treatments with possible positive effect on healing process.


Asunto(s)
Fibroínas , Cementos para Huesos/química , Cementos para Huesos/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Fuerza Compresiva , Fibroínas/química , Polvos
5.
Materials (Basel) ; 14(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34442993

RESUMEN

This study aimed to clarify the therapeutic effect and regenerative potential of the novel, amino acids-enriched acellular biocement (CAL) based on calcium phosphate on osteochondral defects in sheep. Eighteen sheep were divided into three groups, the treated group (osteochondral defects filled with a CAL biomaterial), the treated group with a biocement without amino acids (C cement), and the untreated group (spontaneous healing). Cartilages of all three groups were compared with natural cartilage (negative control). After six months, sheep were evaluated by gross appearance, histological staining, immunohistochemical staining, histological scores, X-ray, micro-CT, and MRI. Treatment of osteochondral defects by CAL resulted in efficient articular cartilage regeneration, with a predominant structural and histological characteristic of hyaline cartilage, contrary to fibrocartilage, fibrous tissue or disordered mixed tissue on untreated defect (p < 0.001, modified O'Driscoll score). MRI results of treated defects showed well-integrated and regenerated cartilage with similar signal intensity, regularity of the articular surface, and cartilage thickness with respect to adjacent native cartilage. We have demonstrated that the use of new biocement represents an effective solution for the successful treatment of osteochondral defects in a sheep animal model, can induce an endogenous regeneration of cartilage in situ, and provides several benefits for the design of future therapies supporting osteochondral defect healing.

6.
Materials (Basel) ; 14(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922310

RESUMEN

A modified one-step process was used to prepare tetracalcium phosphate/monetite/calcium sulfate hemihydrate powder cement mixtures (CAS). The procedure allowed the formation of monetite and calcium sulfate hemihydrate (CSH) in the form of nanoparticles. It was hypothesized that the presence of nanoCSH in small amounts enhances the in vitro bioactivity of CAS cement in relation to osteogenic gene markers in mesenchymal stem cells (MSCs). The CAS powder mixtures with 15 and 5 wt.% CSH were prepared by milling powder tetracalcium phosphate in an ethanolic solution of both orthophosphoric and sulfuric acids. The CAS cements had short setting times (around 5 min). The fast setting of the cement samples after the addition of the liquid component (water solution of NaH2PO4) was due to the partial formation of calcium sulfate dihydrate and hydroxyapatite before soaking in SBF with a small change in the original phase composition in cement powder samples after milling. Nanocrystalline hydroxyapatite biocement was produced by soaking of cement samples after setting in simulated body fluid (SBF). The fast release of calcium ions from CAS5 cement, as well as a small rise in the pH of SBF during soaking, were demonstrated. After soaking in SBF for 7 days, the final product of the cement transformation was nanocrystalline hydroxyapatite. The compressive strength of the cement samples (up to 30 MPa) after soaking in simulated body fluid (SBF) was comparable to that of bone. Real time polymerase chain reaction (RT-PCR) analysis revealed statistically significant higher gene expressions of alkaline phosphatase (ALP), osteonectin (ON) and osteopontin (OP) in cells cultured for 14 days in CAS5 extract compared to CSH-free cement. The addition of a small amount of nanoCSH (5 wt.%) to the tetracalcium phosphate (TTCP)/monetite cement mixture significantly promoted the over expression of osteogenic markers in MSCs. The prepared CAS powder mixture with its enhanced bioactivity can be used for bone defect treatment and has good potential for bone healing.

7.
Materials (Basel) ; 14(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477289

RESUMEN

Novel calcium phosphate cements containing a mixture of four amino acids, glycine, proline, hydroxyproline and either lysine or arginine (CAL, CAK) were characterized and used for treatment of artificial osteochondral defects in knee. It was hypothesized that an enhanced concentration of extracellular collagen amino acids (in complex mixture), in connection with bone cement in defect sites, would support the healing of osteochondral defects with successful formation of hyaline cartilage and subchondral bone. Calcium phosphate cement mixtures were prepared by in situ reaction in a planetary ball mill at aseptic conditions and characterized. It was verified that about 30-60% of amino acids remained adsorbed on hydroxyapatite particles in cements and the addition of amino acids caused around 60% reduction in compressive strength and refinement of hydroxyapatite particles in their microstructure. The significant over-expression of osteogenic genes after the culture of osteoblasts was demonstrated in the cement extracts containing lysine and compared with other cements. The cement pastes were inserted into artificial osteochondral defects in the medial femoral condyle of pigs and, after 3 months post-surgery, tissues were analyzed macroscopically, histologically, immunohistochemically using MRI and X-ray methods. Analysis clearly showed the excellent healing process of artificial osteochondral defects in pigs after treatment with CAL and CAK cements without any inflammation, as well as formation of subchondral bone and hyaline cartilage morphologically and structurally identical to the original tissues. Good integration of the hyaline neocartilage with the surrounding tissue, as well as perfect interconnection between the neocartilage and new subchondral bone tissue, was demonstrated. Tissues were stable after 12 months' healing.

8.
J Funct Biomater ; 11(4)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053846

RESUMEN

(1) Background: The preparation and characterization of novel fully injectable enzymatically hardened tetracalcium phosphate/monetite cements (CXI cements) using phytic acid/phytase (PHYT/F3P) hardening liquid with a small addition of polyacrylic acid/carboxymethyl cellulose anionic polyelectrolyte (PAA/CMC) and enhanced bioactivity. (2) Methods: Composite cements were prepared by mixing of calcium phosphate powder mixture with hardening liquid containing anionic polyelectrolyte. Phase and microstructural analysis, compressive strength, release of ions and in vitro testing were used for the evaluation of cement properties. (3) Results: The simple possibility to control the setting time of self-setting CXI cements was shown (7-28 min) by the change in P/L ratio or PHYT/F3P reaction time. The wet compressive strength of cements (up to 15 MPa) was close to cancellous bone. The increase in PAA content to 1 wt% caused refinement and change in the morphology of hydroxyapatite particles. Cement pastes had a high resistance to wash-out in a short time after cement mixing. The noncytotoxic character of CX cement extracts was verified. Moreover, PHYT supported the formation of Ca deposits, and the additional synergistic effect of PAA and CMC on enhanced ALP activity was found, along with the strong up-regulation of osteogenic gene expressions for osteopontin, osteocalcin and IGF1 growth factor evaluated by the RT-qPCR analysis in osteogenic αMEM 50% CXI extracts. (4) Conclusions: The fully injectable composite calcium phosphate bicements with anionic polyelectrolyte addition showed good mechanical and physico-chemical properties and enhanced osteogenic bioactivity which is a promising assumption for their application in bone defect regeneration.

9.
J Mater Sci Mater Med ; 31(6): 54, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472190

RESUMEN

Novel enzymatically hardened tetracalcium phosphate/monetite cements were prepared applying phytic acid/phytase (PHYT/F3P) mixture as hardening liquid after dissolving in acetic acid solution (CX cement). Properties of the cements were compared with classic cement hardened with 2% NaH2PO4 (C cement) and cement hardened with acetic acid solution (CAC cement) only. In the microstructure of CX cement, columnar growth of hydroxyapatite particles was found in the form of walls around hydroxyapatite agglomerates originated from tetracalcium phosphate which were mutually separated by a material depleted low density zone. Wet compressive strengths (CS) of all cements were practically identical contrary to about 30% higher dry CS's of CX and CAC cements due to specific microstructure. It was verified noncytotoxic character of CX cement extracts and positive effect of CX cement on ALP activity and cell behavior during cultivation. The final Ca/P molar ratio and setting time of cement were effectively controlled by the amount of phytic acid and the change in PHYT/F3P mass ratio, or reaction time in hardening liquid, respectively.


Asunto(s)
6-Fitasa/metabolismo , Cementos para Huesos/química , Fosfatos de Calcio/química , Ácido Fítico/química , 6-Fitasa/química , Animales , Línea Celular , Supervivencia Celular , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Ratones
10.
J Biomater Appl ; 32(7): 871-885, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29224421

RESUMEN

Bone cements based on magnesium phosphates such as newberyite (N; MgHPO4.3H2O) have been shown as potential bone substitutes due to their biocompatibility, biodegradability and ability to support osteoblast differentiation and proliferation. Newberyite can hydrolyze to hydrated magnesium phosphate compounds (e.g. bobierite (Mg3(PO4)2.8H2O)) at alkaline conditions. In this study, 25 and 50 wt% of crystalline ߠ-wollastonite (woll; CaSiO3) was admixed to newberyite powder in order to both enhance the acid-base hydrolysis of newberyite and to produce a functional bone cement. The setting process of wollastonite/newberyite cement mixtures started with the hydrolysis of the wollastonite with further transformation of newberyite into bobierite and the formation of magnesium silicate phase. The results demonstrated that 25 wollastonite/newberyite and 50 wollastonite/newberyite cement pastes at optimal powder/liquid ratios had final setting times of ∼34 and 25 min and compressive strength values of 18 and 32 MPa after seven days setting, respectively. The tests of cytotoxicity of cement extracts on osteoblastic cells and contact cytotoxicity of the cement substrates showed different results. The osteoblasts cultured in cement extracts readily proliferated which confirmed the non-cytotoxic concentration of ions released from both cements. On the other hand, a strong cytotoxic character of 25 wollastonite/newberyite sample surface in contrary to high (∼80%) proliferation activity of cells on the 50 wollastonite/newberyite cement substrate was observed. The differences in cell proliferation activity was attributed to different surface topographies of cement substrates, where needle-like precipitated microcrystals of magnesium phosphate phase (in 25 wollastonite/newberyite cement) prevented the adhesion and proliferation of osteoblasts contrary to the smoother surface covered by extremely fine nanoparticles in the 50 wollastonite/newberyite cement.


Asunto(s)
Cementos para Huesos/química , Sustitutos de Huesos/química , Compuestos de Calcio/química , Compuestos de Magnesio/química , Osteoblastos/citología , Fosfatos/química , Silicatos/química , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Fuerza Compresiva , Concentración de Iones de Hidrógeno , Hidrólisis , Ensayo de Materiales , Ratones
11.
J Mater Sci Mater Med ; 27(12): 181, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27770394

RESUMEN

Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.


Asunto(s)
Fosfatos de Calcio/química , Quitosano/química , Hidroxibutiratos/química , Osteoblastos/citología , Poliésteres/química , Células 3T3 , Animales , Biopolímeros/química , Calcio/química , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Durapatita/química , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Ratones , Peso Molecular , Muramidasa/química , Nanoestructuras/química , Porosidad , Andamios del Tejido/química , Agua/química
12.
J Mater Sci Mater Med ; 26(5): 183, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893389

RESUMEN

Biphasic porous calcium phosphate ceramics was prepared by sintering of transformed tetracalcium phosphate-monetite cement. After annealing hydroxyapatite, ß- or α-TCP were found as main phases in ceramic substrates and a highly microporous microstructure of cement ceramics was created without an addition of porosifier. The origin microstructure features characteristic by the presence of hollow particle agglomerates in cement were preserved in microstructure of cement ceramics after annealing but the hydroxyapatite particles rose in size up to 2 µm and obtained a more regular shape. A small decrease in compressive strength was demonstrated in ceramics sintered up to 1150 °C and enhanced osteoblast proliferation was revealed on cement ceramic substrates in comparison with cement sample and conventional ceramics. The ALP activity of osteoblasts decreased with rise in sintering temperature. The prepared cement microporous ceramics could be utilized as carrier for antibiotics, drugs, growth factors, enzymes or other substances stimulating healing process.


Asunto(s)
Cementos para Huesos/química , Fosfatos de Calcio/química , Cerámica/química , Osteoblastos/fisiología , Andamios del Tejido , Células 3T3 , Animales , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Fuerza Compresiva , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Calefacción , Ensayo de Materiales , Ratones , Osteoblastos/efectos de los fármacos , Porosidad
13.
Biomed Mater ; 10(2): 025006, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25805605

RESUMEN

MC3T3E1 murine pre-osteoblastic cells were used to evaluate the cytotoxicity of tetracalcium phosphate (TTCP)-nanomonetite (DCPA) cement. The starting cement powder mixture was prepared by the in situ reaction between TTCP and a diluted solution of orthophosphoric acid in a planetary ball mill. The cements in the form of pressed cement powder mixture discs differ from each other by the method of pre-treatment and degree of the transformation of cement components in phosphate-buffered saline (PBS). For the evaluation of TTCP-DCPA cement to be non-cytotoxic, it was sufficient to apply the short-time soaking in PBS solution, regardless of whether the cement components were completely transformed or not. If the texture motif and hydroxyapatite particle morphology were properly developed during the initial stage of hardening, the cement cytotoxicity or osteoblast proliferation were insignificantly influenced by the soaking time or the texture stability during cell cultivation, but the lattice ordering enhanced cell proliferation. Results showed that the surface texture and the hydroxyapatite particle morphology are crucial for in vitro cement cytotoxicity evaluation.


Asunto(s)
Cementos para Huesos/química , Cementos para Huesos/toxicidad , Fosfatos de Calcio/química , Fosfatos de Calcio/toxicidad , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Adhesión Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Ensayo de Materiales , Ratones , Nanopartículas/química , Nanopartículas/toxicidad , Nanoestructuras/química , Nanoestructuras/toxicidad , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Transición de Fase , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
14.
J Mater Sci Mater Med ; 25(3): 777-89, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24297513

RESUMEN

Porous polyhydroxybutyrate (PHB)-chitosan biopolymer scaffolds were prepared by co-precipitation from biopolymer solutions with propylene carbonate and acetic acid as solvents. A change of the fibrous character of chitosan precipitates to globular shaped forms with a polyhydroxybutyrate addition was found in suspensions. Scaffolds differ by porosity and morphology of polymers in microstructures, while chitosan represented more compact plate-like fibers and PHB characterized mainly fine fibrous globular agglomerates. Two structurally dissimilar phase regions were verified in blended scaffolds. A rise in the number of smaller pores, and fine structured polymer forms with PHB content were observed in the scaffolds. A significant reduction in the average molecular weight of biopolymers was found in pure chitosan scaffold, this after precipitation of the chitosan in the presence of propylene carbonate and in blends after mutual biopolymer mixing. Interactions between shortened chitosan chains, PHB and chitosan biopolymers in the blends were observed. An excellent fibroblast proliferation was found in scaffolds prepared from biopolymer blends.


Asunto(s)
Materiales Biocompatibles/síntesis química , Quitosano/química , Fibroblastos/citología , Fibroblastos/fisiología , Hidroxibutiratos/química , Poliésteres/química , Andamios del Tejido , Animales , Línea Celular , Proliferación Celular , Análisis de Falla de Equipo , Precipitación Fraccionada/métodos , Ensayo de Materiales , Ratones , Diseño de Prótesis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA