Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
New Phytol ; 241(4): 1851-1865, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38229185

RESUMEN

The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.


Asunto(s)
Evolución Biológica , Rhamnaceae , Ecosistema , Filogenia , Biodiversidad , Especiación Genética
2.
Front Plant Sci ; 14: 1166140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324662

RESUMEN

The plastome (plastid genome) represents an indispensable molecular data source for studying phylogeny and evolution in plants. Although the plastome size is much smaller than that of nuclear genome, and multiple plastome annotation tools have been specifically developed, accurate annotation of plastomes is still a challenging task. Different plastome annotation tools apply different principles and workflows, and annotation errors frequently occur in published plastomes and those issued in GenBank. It is therefore timely to compare available annotation tools and establish standards for plastome annotation. In this review, we review the basic characteristics of plastomes, trends in the publication of new plastomes, the annotation principles and application of major plastome annotation tools, and common errors in plastome annotation. We propose possible methods to judge pseudogenes and RNA-editing genes, jointly consider sequence similarity, customed algorithms, conserved domain or protein structure. We also propose the necessity of establishing a database of reference plastomes with standardized annotations, and put forward a set of quantitative standards for evaluating plastome annotation quality for the scientific community. In addition, we discuss how to generate standardized GenBank annotation flatfiles for submission and downstream analysis. Finally, we prospect future technologies for plastome annotation integrating plastome annotation approaches with diverse evidences and algorithms of nuclear genome annotation tools. This review will help researchers more efficiently use available tools to achieve high-quality plastome annotation, and promote the process of standardized annotation of the plastome.

3.
Front Plant Sci ; 14: 1125107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063179

RESUMEN

Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.

4.
Plant J ; 114(4): 743-766, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36775995

RESUMEN

Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.


Asunto(s)
Hibridación Genética , Magnoliopsida , Filogenia , Genómica , Genoma , Magnoliopsida/genética , Plantas/genética
5.
Am J Bot ; 110(3): 1-11, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36794648

RESUMEN

Biogeographic disjunction patterns, where multiple taxa are shared between isolated geographic areas, represent excellent systems for investigating the historical assembly of modern biotas and fundamental biological processes such as speciation, diversification, niche evolution, and evolutionary responses to climate change. Studies on plant genera disjunct across the northern hemisphere, particularly between eastern North America (ENA) and eastern Asia (EAS), have yielded tremendous insight on the geologic history and assembly of rich temperate floras. However, one of the most prevalent disjunction patterns involving ENA forests has been largely overlooked: that of taxa disjunct between ENA and cloud forests of Mesoamerica (MAM), with examples including Acer saccharum, Liquidambar styraciflua, Cercis canadensis, Fagus grandifolia, and Epifagus virginiana. Despite the remarkable nature of this disjunction pattern, which has been recognized for over 75 years, there have been few recent efforts to empirically examine its evolutionary and ecological origins. Here I synthesize previous systematic, paleobotanical, phylogenetic, and phylogeographic studies to establish what is known about this disjunction pattern to provide a roadmap for future research. I argue that this disjunction pattern, and the evolution and fossil record of the Mexican flora more broadly, represents a key missing piece in the broader puzzle of northern hemisphere biogeography. I also suggest that the ENA-MAM disjunction represents an excellent system for examining fundamental questions about how traits and life history strategies mediate plant evolutionary responses to climate change and for predicting how broadleaf temperate forests will respond to the ongoing climatic pressures of the Anthropocene.


Asunto(s)
Plantas , Filogenia , Filogeografía , Asia Oriental , México
6.
Front Plant Sci ; 13: 870949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668809

RESUMEN

Urticeae s.l., a tribe of Urticaceae well-known for their stinging trichomes, consists of more than 10 genera and approximately 220 species. Relationships within this tribe remain poorly known due to the limited molecular and taxonomic sampling in previous studies, and chloroplast genome (CP genome/plastome) evolution is still largely unaddressed. To address these concerns, we used genome skimming data-CP genome and nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S); 106 accessions-for the very first time to attempt resolving the recalcitrant relationships and to explore chloroplast structural evolution across the group. Furthermore, we assembled a taxon rich two-locus dataset of trnL-F spacer and ITS sequences across 291 accessions to complement our genome skimming dataset. We found that Urticeae plastomes exhibit the tetrad structure typical of angiosperms, with sizes ranging from 145 to 161 kb and encoding a set of 110-112 unique genes. The studied plastomes have also undergone several structural variations, including inverted repeat (IR) expansions and contractions, inversion of the trnN-GUU gene, losses of the rps19 gene, and the rpl2 intron, and the proliferation of multiple repeat types; 11 hypervariable regions were also identified. Our phylogenomic analyses largely resolved major relationships across tribe Urticeae, supporting the monophyly of the tribe and most of its genera except for Laportea, Urera, and Urtica, which were recovered as polyphyletic with strong support. Our analyses also resolved with strong support several previously contentious branches: (1) Girardinia as a sister to the Dendrocnide-Discocnide-Laportea-Nanocnide-Zhengyia-Urtica-Hesperocnide clade and (2) Poikilospermum as sister to the recently transcribed Urera sensu stricto. Analyses of the taxon-rich, two-locus dataset showed lower support but was largely congruent with results from the CP genome and nuclear ribosomal DNA dataset. Collectively, our study highlights the power of genome skimming data to ameliorate phylogenetic resolution and provides new insights into phylogenetic relationships and chloroplast structural evolution in Urticeae.

7.
Nat Plants ; 7(8): 1015-1025, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34282286

RESUMEN

Inferring the intrinsic and extrinsic drivers of species diversification and phenotypic disparity across the tree of life is a major challenge in evolutionary biology. In green plants, polyploidy (or whole-genome duplication, WGD) is known to play a major role in microevolution and speciation, but the extent to which WGD has shaped macroevolutionary patterns of diversification and phenotypic innovation across plant phylogeny remains an open question. Here, we examine the relationship of various facets of genomic evolution-including gene and genome duplication, genome size, and chromosome number-with macroevolutionary patterns of phenotypic innovation, species diversification, and climatic occupancy in gymnosperms. We show that genomic changes, such as WGD and genome-size shifts, underlie the origins of most major extant gymnosperm clades, and notably, our results support an ancestral WGD in the gymnosperm lineage. Spikes of gene duplication typically coincide with major spikes of phenotypic innovation, while increased rates of phenotypic evolution are typically found at nodes with high gene-tree conflict, representing historic population-level dynamics during speciation. Most shifts in gymnosperm diversification since the rise of angiosperms are decoupled from putative WGDs and instead are associated with increased rates of climatic occupancy evolution, particularly in cooler and/or more arid climatic conditions, suggesting that ecological opportunity, especially in the later Cenozoic, and environmental heterogeneity have driven a resurgence of gymnosperm diversification. Our study provides critical insight on the processes underlying diversification and phenotypic evolution in gymnosperms, with important broader implications for the major drivers of both micro- and macroevolution in plants.


Asunto(s)
Cycadopsida/genética , Evolución Molecular , Variación Genética , Genoma de Planta , Filogenia , Poliploidía , Fenotipo
8.
Mol Phylogenet Evol ; 163: 107232, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129935

RESUMEN

Plastid phylogenomic analyses have shed light on many recalcitrant relationships across the angiosperm Tree of Life and continue to play an important role in plant phylogenetics alongside nuclear data sets given the utility of plastomes for revealing ancient and recent introgression. Here we conduct a plastid phylogenomic study of Fagales, aimed at exploring contentious relationships (e.g., the placement of Myricaceae and some intergeneric relationships in Betulaceae, Juglandaceae, and Fagaceae) and dissecting conflicting phylogenetic signals across the plastome. Combining 102 newly sequenced samples with publically available plastomes, we analyzed a dataset including 256 species and 32 of the 34 total genera of Fagales, representing the largest plastome-based study of the order to date. We find strong support for a sister relationship between Myricaceae and Juglandaceae, as well as strongly supported conflicting signal for alternative generic relationships in Betulaceae and Juglandaceae. These conflicts highlight the sensitivity of plastid phylogenomic analyses to genic composition, perhaps due to the prevalence of uninformative loci and heterogeneity in signal across different regions of the plastome. Phylogenetic relationships were geographically structured in subfamily Quercoideae, with Quercus being non-monophyletic and its sections forming clades with co-distributed Old World or New World genera of Quercoideae. Compared against studies based on nuclear genes, these results suggest extensive introgression and chloroplast capture in the early diversification of Quercus and Quercoideae. This study provides a critical plastome perspective on Fagales phylogeny, setting the stage for future studies employing more extensive data from the nuclear genome.


Asunto(s)
Fagales , Genoma de Plastidios , Secuencia de Bases , Cloroplastos/genética , Filogenia , Plastidios/genética
9.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941696

RESUMEN

Evolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between instances of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.


Asunto(s)
Aves/genética , Genómica/métodos , Mamíferos/genética , Filogenia , Plantas/genética , Animales , Aves/anatomía & histología , Aves/clasificación , Evolución Molecular , Genómica/estadística & datos numéricos , Mamíferos/anatomía & histología , Mamíferos/clasificación , Fenotipo , Plantas/anatomía & histología , Plantas/clasificación , Especificidad de la Especie
10.
Plant Divers ; 43(6): 480-491, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024517

RESUMEN

Determining whether the high-latitude Bering land bridge (BLB) was ecologically suitable for the migration of mesothermal plants is significant for Holarctic phytogeographic inferences. Paleobotanical studies provide a critical source of data on the latitudinal positions of different plant lineages at different times, permitting assessment of the efficacy of the BLB for migration. Here we report exceptionally preserved fossils of Firmiana and Tilia endochrysea from the middle Miocene of South Korea. This represents a new reliable record of Firmiana and the first discovery of the T. endochrysea lineage in the fossil record of Asia. The occurrence of these fossils in South Korea indicates that the two lineages had a distribution that extended much farther north during the middle Miocene, but they were still geographically remote from the BLB. In light of the broader fossil record of Asia, our study shows that, in the middle Miocene, some mesothermal plants apparently inhabited the territory adjacent to the BLB and thus they were possibly capable of utilizing the BLB as a migratory corridor. Some other mesothermal plants, such as Firmiana and the T. endochrysea lineages, however, are restricted to more southern regions relative to the BLB based on current fossil evidence. These lineages may have been ecologically unable to traverse the BLB, which raises questions about the efficacy of the BLB as a universal exchange route for mesothermal plants between Asia and North America during the middle Miocene.

11.
Am J Bot ; 107(5): 790-805, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32406108

RESUMEN

PREMISE: Discordance between nuclear and organellar phylogenies (cytonuclear discordance) is a well-documented phenomenon at shallow evolutionary levels but has been poorly investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear discordance across major plant lineages is essential not only for elucidating evolutionary processes, but also for evaluating the currently used framework of plant phylogeny, which is largely based on the plastid genome. METHODS: We present a phylogenomic examination of a major angiosperm clade (Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of evaluating currently accepted relationships inferred from the plastome and exploring potential sources of genomic conflict in this group. RESULTS: We recovered at least five instances of well-supported cytonuclear discordance concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage sorting and hybridization, the latter supported in part by previously inferred whole-genome duplications. CONCLUSIONS: Our results challenge several long-standing hypotheses of asterid relationships and have implications for morphological character evolution and for the importance of ancient whole-genome duplications in early asterid evolution. These findings also highlight the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear genomic data.


Asunto(s)
Genoma de Plastidios , Magnoliopsida/genética , Filogenia , Plastidios , Árboles
12.
Syst Biol ; 69(4): 613-622, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32065640

RESUMEN

Phylogenomic analyses have helped resolve many recalcitrant relationships in the angiosperm tree of life, yet phylogenetic resolution of the backbone of the Leguminosae, one of the largest and most economically and ecologically important families, remains poor due to generally limited molecular data and incomplete taxon sampling of previous studies. Here, we resolve many of the Leguminosae's thorniest nodes through comprehensive analysis of plastome-scale data using multiple modified coding and noncoding data sets of 187 species representing almost all major clades of the family. Additionally, we thoroughly characterize conflicting phylogenomic signal across the plastome in light of the family's complex history of plastome evolution. Most analyses produced largely congruent topologies with strong statistical support and provided strong support for resolution of some long-controversial deep relationships among the early diverging lineages of the subfamilies Caesalpinioideae and Papilionoideae. The robust phylogenetic backbone reconstructed in this study establishes a framework for future studies on legume classification, evolution, and diversification. However, conflicting phylogenetic signal was detected and quantified at several key nodes that prevent the confident resolution of these nodes using plastome data alone. [Leguminosae; maximum likelihood; phylogenetic conflict; plastome; recalcitrant relationships; stochasticity; systematic error.].


Asunto(s)
Fabaceae/clasificación , Fabaceae/genética , Genoma de Plastidios/genética , Filogenia
13.
PeerJ ; 7: e7747, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579615

RESUMEN

Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.

14.
Rev. biol. trop ; 67(4)sept. 2019.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1507563

RESUMEN

El género Oecopetalum Greenm. & C.H. Thomps. (Metteniusaceae) se distribuye en el sureste de México y en América Central (Guatemala, Nicaragua y Costa Rica). Tres especies han sido descritas. Estudiamos especímenes de herbario de Oecopetalum y realizamos un análisis filogenético basado en los genes de los cloroplastos matK y ndhF para responder a las preguntas principales: ¿Cuántas especies hay en el género Oecopetalum? ¿Es Oecopetalum monofilético? ¿Cuáles son las relaciones genéricas con otros miembros de la familia? Oecopetalum es un género monofilético con solo dos especies y Pittosporosis es el grupo hermano. La relación transatlántica de Oecopetalum y Pittosporosis es un patrón geográfico recurrente en la familia Mettenuisaceae, así como en Icacinaceae. Nuestros resultados, en concordancia con la evidencia fósil y las relaciones de otros grupos, apoyan el modelo boreotropical de migraciones terrestres de táxones tropicales desde latitudes altas durante el Paleoceno-Eoceno, globalmente cálido.


Oecopetalum Greenm. & C.H. Thomps. (Metteniusaceae) is distributed in the southeastern portion of Mexico to Central America (Guatemala, Nicaragua, and Costa Rica). Three species have been described. We studied herbarium specimens of the genus Oecopetalum and performed a phylogenetic analysis based on the plastid genes matK and ndhF to answer several major questions: How many species are in the genus Oecopetalum? Is Oecopetalum monophyletic, and how is the genus related to other members of the family? Our results indicate that Oecopetalum is monophyletic, with only two species, and sister to the Asian genus Pittosporopsis. The Trans-Atlantic relationship of Oecopetalum and Pittosporosis is a recurrent geographic pattern in the families Mettenuisaceae and Icacinaceae. Our results, in agreement the fossil record and previous phylogenetic studies, support the boreotropical model of high-latitude terrestrial migrations of tropical taxa during the globally warm Paleocene-Eocene.

15.
Am J Bot ; 105(3): 470-479, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656519

RESUMEN

PREMISE OF THE STUDY: Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this phylogenetic framework with extensive morphological data sets have been surprisingly rare. Here, we explore character evolution in Asteridae (asterids), a major angiosperm clade, using an extensive morphological data set and a well-resolved phylogeny. METHODS: We scored 15 phenotypic characters (spanning chemistry, vegetative anatomy, and floral, fruit, and seed features) across 248 species for ancestral state reconstruction using a phylogenetic framework based on 73 plastid genes and the same 248 species. KEY RESULTS: Iridoid production, unitegmic ovules, and cellular endosperm were all reconstructed as synapomorphic for Asteridae. Sympetaly, long associated with asterids, shows complex patterns of evolution, suggesting it arose several times independently within the clade. Stamens equal in number to the petals is likely a synapomorphy for Gentianidae, a major asterid subclade. Members of Lamianae, a major gentianid subclade, are potentially diagnosed by adnate stamens, unilacunar nodes, and simple perforation plates. CONCLUSIONS: The analyses presented here provide a greatly improved understanding of character evolution across Asteridae, highlighting multiple characters potentially synapomorphic for major clades. However, several important parts of the asterid tree are poorly known for several key phenotypic features (e.g., degree of petal fusion, integument number, nucellus type, endosperm type, iridoid production). Further morphological, anatomical, developmental, and chemical investigations of these poorly known asterids are critical for a more detailed understanding of early asterid evolution.


Asunto(s)
Evolución Biológica , Genoma de Plastidios , Magnoliopsida/genética , Fenotipo , Filogenia , Endospermo , Flores , Genes de Plantas , Iridoides/metabolismo , Magnoliopsida/anatomía & histología , Magnoliopsida/metabolismo , Óvulo Vegetal , Especificidad de la Especie
16.
Proc Biol Sci ; 284(1864)2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021179

RESUMEN

Puttick et al. (2017 Proc. R. Soc. B284, 20162290 (doi:10.1098/rspb.2016.2290)) performed a simulation study to compare accuracy among methods of inferring phylogeny from discrete morphological characters. They report that a Bayesian implementation of the Mk model (Lewis 2001 Syst. Biol.50, 913-925 (doi:10.1080/106351501753462876)) was most accurate (but with low resolution), while a maximum-likelihood (ML) implementation of the same model was least accurate. They conclude by strongly advocating that Bayesian implementations of the Mk model should be the default method of analysis for such data. While we appreciate the authors' attempt to investigate the accuracy of alternative methods of analysis, their conclusion is based on an inappropriate comparison of the ML point estimate, which does not consider confidence, with the Bayesian consensus, which incorporates estimation credibility into the summary tree. Using simulation, we demonstrate that ML and Bayesian estimates are concordant when confidence and credibility are comparably reflected in summary trees, a result expected from statistical theory. We therefore disagree with the conclusions of Puttick et al. and consider their prescription of any default method to be poorly founded. Instead, we recommend caution and thoughtful consideration of the model or method being applied to a morphological dataset.


Asunto(s)
Teorema de Bayes , Filogenia , Funciones de Verosimilitud , Fenotipo , Incertidumbre
17.
Am J Bot ; 102(11): 1794-813, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26507112

RESUMEN

PREMISE OF THE STUDY: Major relationships within Lamiidae, an asterid clade with ∼40000 species, have largely eluded resolution despite two decades of intensive study. The phylogenetic positions of Icacinaceae and other early-diverging lamiid clades (Garryales, Metteniusaceae, and Oncothecaceae) have been particularly problematic, hindering classification and impeding our understanding of early lamiid (and euasterid) character evolution. METHODS: To resolve basal lamiid phylogeny, we sequenced 50 plastid genomes using the Illumina sequencing platform and combined these with available asterid plastome sequence data for more comprehensive phylogenetic analyses. KEY RESULTS: Our analyses resolved basal lamiid relationships with strong support, including the circumscription and phylogenetic position of the enigmatic Icacinaceae. This greatly improved basal lamiid phylogeny offers insight into character evolution and facilitates an updated classification for this clade, which we present here, including phylogenetic definitions for 10 new or converted clade names. We also offer recommendations for applying this classification to the Angiosperm Phylogeny Group (APG) system, including the recognition of a reduced Icacinaceae, an expanded Metteniusaceae, and two orders new to APG: Icacinales (Icacinaceae + Oncothecaceae) and Metteniusales (Metteniusaceae). CONCLUSIONS: The lamiids possibly radiated from an ancestry of tropical trees with inconspicuous flowers and large, drupaceous fruits, given that these morphological characters are distributed across a grade of lineages (Icacinaceae, Oncothecaceae, Metteniusaceae) subtending the core lamiid clade (Boraginales, Gentianales, Lamiales, Solanales, Vahlia). Furthermore, the presence of similar morphological features among members of Aquifoliales suggests these characters might be ancestral for the Gentianidae (euasterids) as a whole.


Asunto(s)
Genoma de Plastidios/genética , Magnoliopsida/genética , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Magnoliopsida/clasificación , Filogenia , Plastidios/genética
18.
Am J Bot ; 102(5): 725-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26022487

RESUMEN

PREMISE OF THE STUDY: The Icacinaceae are a pantropical family of trees, shrubs, and climbers with an extensive Paleogene fossil record. Our improved understanding of phylogenetic relationships within the family provides an excellent context for investigating new fossil fruit and leaf material from the Eocene of western North America. METHODS: We examined fossils from early and middle Eocene sediments of western Wyoming, northeastern Utah, northwestern Colorado, and Oregon and compared them with extant species of Iodes and other icacinaceous genera as well as previously described fossils of the family. KEY RESULTS: Three new fossil species are described, including two based on endocarps (Iodes occidentalis sp. nov. and Icacinicaryites lottii sp. nov.) and one based on leaves (Goweria bluerimensis sp. nov.). The co-occurrence of I. occidentalis and G. bluerimensis suggests these might represent detached organs of a single species. A new genus, Biceratocarpum, is also established for morphologically distinct fossil fruits of Icacinaceae previously placed in Carpolithus. Biceratocarpum brownii gen. et comb. nov. resembles the London Clay species "Iodes" corniculata in possessing a pair of subapical protrusions. CONCLUSIONS: These fossils increase our knowledge of Icacinaceae in the Paleogene of North America and highlight the importance of the Northern Hemisphere in the early diversification of the family. They also document interchange with the Eocene flora of Europe and biogeographic connections with modern floras of Africa and Asia, where Icacinaceae are diverse today. The present-day restriction of this family to tropical regions offers ecological implications for the Eocene floras in which they occur.


Asunto(s)
Evolución Biológica , Magnoliopsida/clasificación , Magnoliopsida/fisiología , Dispersión de las Plantas , Fósiles , Frutas/anatomía & histología , Frutas/clasificación , Magnoliopsida/anatomía & histología , Noroeste de Estados Unidos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/clasificación , Sudoeste de Estados Unidos
19.
Appl Plant Sci ; 1(2)2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25202518

RESUMEN

PREMISE OF THE STUDY: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS) of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. • METHODS AND RESULTS: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots), which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×), even for the two monocots. • CONCLUSIONS: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving ∼50× mean coverage). However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96) available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...