Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38095299

RESUMEN

Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.


Asunto(s)
Quiasma Óptico , Células Ganglionares de la Retina , Animales , Ratones , Axones/metabolismo , Diencéfalo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vías Visuales
2.
Cells ; 12(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37681896

RESUMEN

Olfaction depends on lifelong production of sensory neurons from CXCR4 expressing neurogenic stem cells. Signaling by CXCR4 depends on the concentration of CXCL12, CXCR4's principal ligand. Here, we use several genetic models to investigate how regulation of CXCL12 in the olfactory stem cell niche adjusts neurogenesis. We identify subepithelial tissue and sustentacular cells, the olfactory glia, as main CXCL12 sources. Lamina propria-derived CXCL12 accumulates on quiescent gliogenic stem cells via heparan sulfate. Additionally, CXCL12 is secreted within the olfactory epithelium by sustentacular cells. Both sustentacular-cell-derived and lamina propria-derived CXCL12 are required for CXCR4 activation. ACKR3, a high-affinity CXCL12 scavenger, is expressed by mature glial cells and titrates CXCL12. The accurate adjustment of CXCL12 by ACKR3 is critical for CXCR4-dependent proliferation of neuronal stem cells and for proper lineage progression. Overall, these findings establish precise regulation of CXCL12 by glia cells as a prerequisite for CXCR4-dependent neurogenesis and identify ACKR3 as a scavenger influencing tissue homeostasis beyond embryonic development.


Asunto(s)
Neuroglía , Olfato , Transporte Biológico , Quimiocina CXCL12 , Neurogénesis , Células Receptoras Sensoriales
3.
J Neuroinflammation ; 20(1): 8, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631780

RESUMEN

BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.


Asunto(s)
Quimiocina CXCL12 , Accidente Cerebrovascular Isquémico , Células Asesinas Naturales , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Quimiocina CXCL12/metabolismo , Células Endoteliales , Inmunidad Innata , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Células Asesinas Naturales/metabolismo , Linfocitos
4.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35961772

RESUMEN

Midbrain dopaminergic (mDA) neurons are generated from a ventral midbrain progenitor zone over a time span of several days [embryonic day 10.0 (E10.0) to E14.5 in mouse]. Within this neurogenic period, a progressively changing fate potential of mDA progenitors could contribute to the generation of diverse mDA neuronal subpopulations. To test this idea, we combined inducible genetic fate mapping and intersectional labeling approaches to trace the lineage of cells expressing the chemokine receptor CXCR4. The Cxcr4 transcript is expressed in mDA progenitors and precursors, but not in differentiated mDA neurons. Cxcr4-expressing mDA progenitors/precursors labeled at E11.5 develop into a broad range of mDA neurons, whereas labeling of the Cxcr4 lineage at later time points (E12.5-E15.5) results in an increasingly restricted contribution to mDA neurons proceeding from lateral to medial in the substantia nigra and from dorsal to ventral in the ventral tegmental area. In parallel, the innervation of dopaminergic projection targets by mDA neurons derived from Cxcr4-expressing cells is becoming more restricted: the late-generated mDA neurons innervate only the medial-rostral regions in the dorsal striatum and only the medial shell in the nucleus accumbens. Our results suggest that mDA progenitor cells become increasingly restricted in their cell fate potential over time.


Asunto(s)
Neuronas Dopaminérgicas , Mesencéfalo , Animales , Dopamina , Mesencéfalo/fisiología , Ratones , Células Madre , Sustancia Negra
5.
Cell Rep ; 40(5): 111157, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926459

RESUMEN

The function of the cerebral cortex depends on various types of interneurons (cortical interneurons [cINs]) and their appropriate allocation to the cortical layers. Caudal ganglionic eminence-derived cINs (cGE-cINs) are enriched in superficial layers. Developmental mechanisms directing cGE-cINs toward superficial layers remain poorly understood. We examine how developmental and final positioning of cGE-cINs are influenced by the Cxcl12, Cxcr4, Ackr3 module, the chief attractant system guiding medial ganglionic eminence-derived cINs (mGE-cINs). We find that Cxcl12 attracts cGE-cINs through Cxcr4 and supports their layer-specific positioning in the developing cortex. This requires the prevention of excessive Cxcr4 stimulation by Ackr3-mediated Cxcl12 sequestration. Postnatally, Ackr3 confines Cxcl12 action to the marginal zone. Unlike mGE-cINs, cGE-cINs continue to express Cxcr4 at early postnatal stages, which permits cGE-cINs to become positioned in the forming layer 1. Thus, chemoattraction by Cxcl12 guides cGE-cINs and holds them in superficial cortical layers.


Asunto(s)
Corteza Cerebral , Interneuronas , Movimiento Celular/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Eminencia Media , Mesodermo
6.
Nat Commun ; 13(1): 1823, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383158

RESUMEN

Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.


Asunto(s)
Daño por Reperfusión , Trombosis , Animales , Plaquetas/metabolismo , Humanos , Ratones , Activación Plaquetaria , Reperfusión , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Trombosis/metabolismo
7.
Nat Commun ; 13(1): 945, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177618

RESUMEN

Inflammation triggers secondary brain damage after stroke. The meninges and other CNS border compartments serve as invasion sites for leukocyte influx into the brain thus promoting tissue damage after stroke. However, the post-ischemic immune response of border compartments compared to brain parenchyma remains poorly characterized. Here, we deeply characterize tissue-resident leukocytes in meninges and brain parenchyma and discover that leukocytes respond differently to stroke depending on their site of residence. We thereby discover a unique phenotype of myeloid cells exclusive to the brain after stroke. These stroke-associated myeloid cells partially resemble neurodegenerative disease-associated microglia. They are mainly of resident microglial origin, partially conserved in humans and exhibit a lipid-phagocytosing phenotype. Blocking markers specific for these cells partially ameliorates stroke outcome thus providing a potential therapeutic target. The injury-response of myeloid cells in the CNS is thus compartmentalized, adjusted to the type of injury and may represent a therapeutic target.


Asunto(s)
Infarto de la Arteria Cerebral Media/complicaciones , Células Mieloides/inmunología , Enfermedades Neuroinflamatorias/inmunología , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Humanos , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Microglía/citología , Microglía/inmunología , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/patología , Piamadre/citología , Piamadre/inmunología , Piamadre/patología
8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884783

RESUMEN

Among the five somatostatin receptors (SST1-SST5), SST4 is the least characterized, which is in part due to the lack of specific monoclonal antibodies. We generated a knockin mouse model that expresses a carboxyl-terminal SST4-eGFP fusion protein. In addition, we extensively characterized the novel rabbit monoclonal anti-human SST4 antibody 7H49L61 using transfected cells and receptor-expressing tissues. 7H49L61 was then subjected to immunohistochemical staining of a series of formalin-fixed, paraffin-embedded normal and neoplastic human tissues. Characterization of SST4-eGFP mice revealed prominent SST4 expression in cortical pyramidal cells and trigeminal ganglion cells. In the human cortex, 7H49L61 disclosed a virtually identical staining pattern. Specificity of 7H49L61 was demonstrated by detection of a broad band migrating at 50-60 kDa in immunoblots. Tissue immunostaining was abolished by preadsorption of 7H49L61 with its immunizing peptide. In the subsequent immunohistochemical study, 7H49L61 yielded a predominant plasma membrane staining in adrenal cortex, exocrine pancreas, and placenta. SST4 was also found in glioblastomas, parathyroid adenomas, gastric and pancreatic adenocarcinomas, pheochromocytomas, and lymphomas. Altogether, we provide the first unequivocal localization of SST4 in normal and neoplastic human tissues. The monoclonal antibody 7H49L61 may also prove of great value for identifying SST4-expressing tumors during routine histopathological examinations.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Técnicas de Sustitución del Gen , Neoplasias/patología , Receptores de Somatostatina/inmunología , Coloración y Etiquetado/métodos , Animales , Línea Celular , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Cell Rep ; 36(8): 109610, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433040

RESUMEN

Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.


Asunto(s)
Quimiocina CXCL12/metabolismo , Morfogénesis/fisiología , Organogénesis/fisiología , Transducción de Señal/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores CXCR/deficiencia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/genética
10.
PLoS Genet ; 17(3): e1009441, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739968

RESUMEN

Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research.


Asunto(s)
Proteínas de Ciclo Celular/genética , Diferenciación Celular , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Hipocampo/metabolismo , Ratones , Neocórtex , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Telencéfalo/citología , Telencéfalo/metabolismo
11.
Stem Cells ; 39(5): 617-635, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470495

RESUMEN

The olfactory epithelium (OE) possesses unique lifelong neuroregenerative capacities and undergoes constitutive neurogenesis throughout mammalian lifespan. Two populations of stem cells, frequently dividing globose basal cells (GBCs) and quiescent horizontal basal cells (HBCs), readily replace olfactory neurons throughout lifetime. Although lineage commitment and neuronal differentiation of stem cells has already been described in terms of transcription factor expression, little is known about external factors balancing between differentiation and self-renewal. We show here that expression of the CXC-motif chemokine receptor 4 (CXCR4) distinguishes both types of stem cells. Extensive colocalization analysis revealed exclusive expression of CXCR4 in proliferating GBCs and their neuronal progenies. Moreover, only neuronal lineage cells were derived from CXCR4-CreER-tdTomato reporter mice in the OE. Furthermore, Cre-tdTomato mice specific for HBCs (Nestin+ and Cytokeratin14+) did not reduce CXCR4 expression when bred to mice bearing floxed CXCR4 alleles, and did not show labeling of the neuronal cells. CXCR4 and its ligand CXCL12 were markedly upregulated upon induction of GBC proliferation during injury-induced regeneration. in vivo overexpression of CXCL12 did downregulate CXCR4 levels, which results in reduced GBC maintenance and neuronal differentiation. We proved that these effects were caused by CXCR4 downregulation rather than over-activation by showing that the phenotypes of CXCL12-overexpressing mice were highly similar to the phenotypes of CXCR4 knockout mice. Our results demonstrate functional CXCR4 signaling in GBCs regulates cell cycle exit and neural differentiation. We propose that CXCR4/CXCL12 signaling is an essential regulator of olfactory neurogenesis and provide new insights into the dynamics of neurogenesis in the OE.


Asunto(s)
Quimiocina CXCL12/genética , Regeneración Nerviosa/genética , Neurogénesis/genética , Nervio Olfatorio/crecimiento & desarrollo , Receptores CXCR4/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Queratina-14/genética , Ratones , Ratones Noqueados , Nestina/genética , Células-Madre Neurales/citología , Neuronas/citología , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/lesiones , Nervio Olfatorio/metabolismo
12.
Nat Commun ; 12(1): 464, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469015

RESUMEN

Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.


Asunto(s)
Inmunidad Adaptativa/fisiología , Diferenciación Celular/genética , Citocinas/metabolismo , Células Dendríticas/inmunología , Regulación del Desarrollo de la Expresión Génica/inmunología , Factores de Edad , Animales , Diferenciación Celular/inmunología , Separación Celular , Células Dendríticas/metabolismo , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/inmunología , Transcriptoma/inmunología
13.
Nat Commun ; 11(1): 4855, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978390

RESUMEN

The atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43). Cx43 and ACKR3 are co-expressed in mouse brain astrocytes and human glioblastoma cells and form a complex in embryonic mouse brain. Functional in vitro studies show enhanced ACKR3 interaction with Cx43 upon ACKR3 agonist stimulation. Furthermore, ACKR3 activation promotes ß-arrestin2- and dynamin-dependent Cx43 internalization to inhibit gap junctional intercellular communication in primary astrocytes. These results demonstrate a functional link between ACKR3 and gap junctions that might be of pathophysiological relevance.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular/fisiología , Conexina 43/metabolismo , Uniones Comunicantes/patología , Receptores CXCR/metabolismo , Animales , Proliferación Celular , Conexina 43/efectos de los fármacos , Conexinas/metabolismo , Técnicas de Sustitución del Gen , Glioblastoma/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dominios y Motivos de Interacción de Proteínas , Receptores CXCR/agonistas , Receptores CXCR/genética , Transducción de Señal/fisiología
14.
Cell Rep ; 32(6): 108004, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783932

RESUMEN

During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.


Asunto(s)
Hemangioblastos/metabolismo , Hematopoyesis/fisiología , Tejido Linfoide/embriología , Receptores CXCR4/metabolismo , Animales , Desarrollo Embrionario/fisiología , Hemangioblastos/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunidad Innata , Hígado/embriología , Linfocitos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Saco Vitelino/embriología
15.
Nat Neurosci ; 23(5): 676-689, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284604

RESUMEN

While CNS microglia have been extensively studied, relatively little is known about macrophages populating the peripheral nervous system. Here we performed ontogenic, transcriptomic and spatial characterization of sciatic nerve macrophages (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and become replaced by bone-marrow-derived macrophages over time. Using single-cell transcriptomics, we identified a tissue-specific core signature of snMacs and two spatially separated snMacs: Relmα+Mgl1+ snMacs in the epineurium and Relmα-Mgl1- snMacs in the endoneurium. Globally, snMacs lack most of the core signature genes of microglia, with only the endoneurial subset expressing a restricted number of these genes. In response to nerve injury, the two resident snMac populations respond differently. Moreover, and unlike in the CNS, monocyte-derived macrophages that develop during injury can engraft efficiently in the pool of resident peripheral nervous system macrophages.


Asunto(s)
Macrófagos/citología , Macrófagos/fisiología , Nervio Ciático/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Transcriptoma
16.
Nat Neurosci ; 23(3): 351-362, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042176

RESUMEN

Monocyte-derived and tissue-resident macrophages are ontogenetically distinct components of the innate immune system. Assessment of their respective functions in pathology is complicated by changes to the macrophage phenotype during inflammation. Here we find that Cxcr4-CreER enables permanent genetic labeling of hematopoietic stem cells (HSCs) and distinguishes HSC-derived monocytes from microglia and other tissue-resident macrophages. By combining Cxcr4-CreER-mediated lineage tracing with Cxcr4 inhibition or conditional Cxcr4 ablation in photothrombotic stroke, we find that Cxcr4 promotes initial monocyte infiltration and subsequent territorial restriction of monocyte-derived macrophages to infarct tissue. After transient focal ischemia, Cxcr4 deficiency reduces monocyte infiltration and blunts the expression of pattern recognition and defense response genes in monocyte-derived macrophages. This is associated with an altered microglial response and deteriorated outcomes. Thus, Cxcr4 is essential for an innate-immune-system-mediated defense response after cerebral ischemia. We further propose Cxcr4-CreER as a universal tool to study functions of HSC-derived cells.


Asunto(s)
Isquemia Encefálica/inmunología , Células Madre Hematopoyéticas/inmunología , Microglía/inmunología , Monocitos/inmunología , Receptores CXCR4/metabolismo , Accidente Cerebrovascular/inmunología , Animales , Isquemia Encefálica/patología , Linaje de la Célula , Infarto Cerebral/inmunología , Infarto Cerebral/patología , Células Madre Hematopoyéticas/patología , Inmunidad Innata/genética , Ataque Isquémico Transitorio/inmunología , Ataque Isquémico Transitorio/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Monocitos/patología , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Accidente Cerebrovascular/patología , Trombosis/patología , Resultado del Tratamiento
17.
J Exp Med ; 216(7): 1630-1647, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31088898

RESUMEN

Lymphocyte migration is mediated by G protein-coupled receptors (GPCRs) that respond to chemoattractive molecules. After their activation, GPCRs are phosphorylated by different GPCR kinases (GRKs), which produces distinct functional outcomes through ß-arrestins. However, the molecular machinery that targets individual GRKs to activated GPCRs remains elusive. Here, we identified a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and COMMD8 (COMMD3/8 complex) as an adaptor that selectively recruits a specific GRK to chemoattractant receptors and promotes lymphocyte chemotaxis. COMMD8, whose stability depended on COMMD3, was recruited to multiple chemoattractant receptors. Deficiency of COMMD8 or COMMD3 impaired B cell migration and humoral immune responses. Using CXC-chemokine receptor 4 (CXCR4) as a model, we demonstrated that the COMMD3/8 complex selectively recruited GRK6 and induced GRK6-mediated phosphorylation of the receptor and activation of ß-arrestin-mediated signaling. Thus, the COMMD3/8 complex is a specificity determinant of GRK targeting to GPCRs and represents a point of regulation for immune responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Proteínas/metabolismo , Receptores de Formil Péptido/metabolismo , Animales , Linfocitos B/metabolismo , Quimiotaxis de Leucocito , Citometría de Flujo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Fosforilación , Receptores CXCR4/metabolismo , Técnicas del Sistema de Dos Híbridos , beta-Arrestinas/metabolismo
18.
Cell Rep ; 26(6): 1473-1488.e9, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726732

RESUMEN

Phosphorylation of heptahelical receptors is thought to regulate G protein signaling, receptor endocytosis, and non-canonical signaling via recruitment of ß-arrestins. We investigated chemokine receptor functionality under phosphorylation-deficient and ß-arrestin-deficient conditions by studying interneuron migration in the embryonic cortex. This process depends on CXCL12, CXCR4, G protein signaling and on the atypical CXCL12 receptor ACKR3. We found that phosphorylation was crucial, whereas ß-arrestins were dispensable for ACKR3-mediated control of CXCL12 levels in vivo. Cortices of mice expressing phosphorylation-deficient ACKR3 exhibited a major interneuron migration defect, which was accompanied by excessive activation and loss of CXCR4. Cxcl12-overexpressing mice mimicked this phenotype. Excess CXCL12 caused lysosomal CXCR4 degradation, loss of CXCR4 responsiveness, and, ultimately, similar motility defects as Cxcl12 deficiency. By contrast, ß-arrestin deficiency caused only a subtle migration defect mimicked by CXCR4 gain of function. These findings demonstrate that phosphorylation regulates atypical chemokine receptor function without ß-arrestin involvement in chemokine sequestration and non-canonical signaling.


Asunto(s)
Movimiento Celular , Interneuronas/metabolismo , Receptores CXCR/metabolismo , Animales , Células CHO , Quimiocina CXCL12/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores CXCR/genética , beta-Arrestinas/metabolismo
19.
Glia ; 66(8): 1566-1576, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29537098

RESUMEN

Adult hippocampal neurogenesis is implicated in learning and memory processing. It is tightly controlled at several levels including progenitor proliferation as well as migration, differentiation and integration of new neurons. Hippocampal progenitors and immature neurons reside in the subgranular zone (SGZ) and are equipped with the CXCL12-receptor CXCR4 which contributes to defining the SGZ as neurogenic niche. The atypical CXCL12-receptor CXCR7 functions primarily by sequestering extracellular CXCL12 but whether CXCR7 is involved in adult neurogenesis has not been assessed. We report that granule neurons (GN) upregulate CXCL12 and CXCR7 during dentate gyrus maturation in the second postnatal week. To test whether GN-derived CXCL12 regulates neurogenesis and if neuronal CXCR7 receptors influence this process, we conditionally deleted Cxcl12 and Cxcr7 from the granule cell layer. Cxcl12 deletion resulted in lower numbers, increased dispersion and abnormal dendritic growth of immature GN and reduced neurogenesis. Cxcr7 ablation caused an increase in progenitor proliferation and progenitor numbers and reduced dispersion of immature GN. Thus, we provide a new mechanism where CXCL12-signals from GN prevent dispersion and support maturation of newborn GN. CXCR7 receptors of GN modulate the CXCL12-mediated feedback from GN to the neurogenic niche.


Asunto(s)
Quimiocina CXCL12/metabolismo , Giro Dentado/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Dendritas/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Células-Madre Neurales/metabolismo
20.
Mol Pharmacol ; 91(6): 554-566, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28331048

RESUMEN

Phosphorylation of G protein-coupled receptors (GPCRs) is a key event for cell signaling and regulation of receptor function. Previously, using tandem mass spectrometry, we identified two phosphorylation sites at the distal C-terminal tail of the chemokine receptor CXCR4, but were unable to determine which specific residues were phosphorylated. Here, we demonstrate that serines (Ser) 346 and/or 347 (Ser-346/7) of CXCR4 are phosphorylated upon stimulation with the agonist CXCL12 as well as a CXCR4 pepducin, ATI-2341. ATI-2341, a Gαißγ heterotrimer-biased CXCR4 agonist, induced more robust phosphorylation of Ser-346/7 compared with CXCL12. Knockdown of G protein-coupled receptor kinase (GRK) 2, GRK3, or GRK6 reduced CXCL12-induced phosphorylation of Ser-346/7 with GRK3 knockdown having the strongest effect, while inhibition of the conventional protein kinase C (PKC) isoforms, particularly PKCα, reduced phosphorylation of Ser-346/7 induced by either CXCL12 or ATI-2341. The loss of GRK3- or PKC-mediated phosphorylation of Ser-346/7 impaired the recruitment of ß-arrestin to CXCR4. We also found that a pseudo-substrate peptide inhibitor for PKCζ effectively inhibited CXCR4 phosphorylation and signaling, most likely by functioning as a nonspecific CXCR4 antagonist. Together, these studies demonstrate the role Ser-346/7 plays in arrestin recruitment and initiation of receptor desensitization and provide insight into the dysregulation of CXCR4 observed in patients with various forms of WHIM syndrome.


Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G/metabolismo , Proteína Quinasa C/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestinas/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...