Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Bull ; 241(3): 330-346, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35015620

RESUMEN

AbstractCrown-of-thorns sea stars (Acanthaster sp.) are among the most studied coral reef organisms, owing to their propensity to undergo major population irruptions, which contribute to significant coral loss and reef degradation throughout the Indo-Pacific. However, there are still important knowledge gaps pertaining to the biology, ecology, and management of Acanthaster sp. Renewed efforts to advance understanding and management of Pacific crown-of-thorns sea stars (Acanthaster sp.) on Australia's Great Barrier Reef require explicit consideration of relevant and tractable knowledge gaps. Drawing on established horizon scanning methodologies, this study identified contemporary knowledge gaps by asking active and/or established crown-of-thorns sea star researchers to pose critical research questions that they believe should be addressed to improve the understanding and management of crown-of-thorns sea stars on the Great Barrier Reef. A total of 38 participants proposed 246 independent research questions, organized into 7 themes: feeding ecology, demography, distribution and abundance, predation, settlement, management, and environmental change. Questions were further assigned to 48 specific topics nested within the 7 themes. During this process, redundant questions were removed, which reduced the total number of distinct research questions to 172. Research questions posed were mostly related to themes of demography (46 questions) and management (48 questions). The dominant topics, meanwhile, were the incidence of population irruptions (16 questions), feeding ecology of larval sea stars (15 questions), effects of elevated water temperature on crown-of-thorns sea stars (13 questions), and predation on juveniles (12 questions). While the breadth of questions suggests that there is considerable research needed to improve understanding and management of crown-of-thorns sea stars on the Great Barrier Reef, the predominance of certain themes and topics suggests a major focus for new research while also providing a roadmap to guide future research efforts.


Asunto(s)
Antozoos , Estrellas de Mar , Animales , Australia , Biología , Arrecifes de Coral , Humanos
2.
Dev Biol ; 384(2): 181-93, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140542

RESUMEN

During eye lens development, regulation of Wnt/ß-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/ß-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/ß-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/ß-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/ß-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/ß-catenin signaling in lens epithelial cells.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Cristalino/metabolismo , Proteínas de la Membrana/fisiología , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Secuencia de Bases , Proliferación Celular , Cartilla de ADN , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Cristalino/citología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa
3.
Dev Biol ; 338(2): 193-201, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19968984

RESUMEN

Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having an apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2 shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles.


Asunto(s)
Polaridad Celular , Cilios/ultraestructura , Glicoproteínas/metabolismo , Cristalino/patología , Proteínas de la Membrana/genética , Animales , Células Epiteliales/química , Células Epiteliales/patología , Receptores Frizzled/genética , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intracelular , Cristalino/citología , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Receptores Acoplados a Proteínas G/genética
4.
Dev Biol ; 324(1): 161-76, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18824165

RESUMEN

How an organ develops its characteristic shape is a major issue. This is particularly critical for the eye lens as its function depends on having appropriately ordered three-dimensional cellular architecture. Recent in vitro studies indicate that Wnt signaling plays key roles in regulating morphological events in FGF-induced fiber cell differentiation in the mammalian lens. To further investigate this the Wnt signaling antagonist, secreted frizzled-related protein 2 (Sfrp2), was overexpressed in lens fiber cells of transgenic mice. In these mice fiber cell elongation was attenuated and individual fibers exhibited irregular shapes and consequently did not align or pack regularly; microtubules, microfilaments and intermediate filaments were clearly disordered in these fibers. Furthermore, a striking feature of transgenic lenses was that fibers did not develop the convex curvature typically seen in normal lenses. This appears to be related to a lack of protrusive processes that are required for directed migratory activity at their apical and basal tips as well as for the formation of interlocking processes along their lateral margins. Components of the Wnt/Planar Cell Polarity (PCP) pathway were downregulated or inhibited. Taken together this supports a role for Wnt/PCP signaling in orchestrating the complex organization and dynamics of the fiber cell cytoskeleton.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Cristalino/embriología , Proteínas de la Membrana/fisiología , Proteínas Wnt/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Cristalino/citología , Cristalino/crecimiento & desarrollo , Cristalino/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología
5.
Int J Dev Biol ; 48(8-9): 867-77, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15558478

RESUMEN

Recent studies indicate a role for Wnt signaling in regulating lens cell differentiation (Stump et al., 2003). Here we investigated expression patterns of Wnt receptors, the Frizzleds (Fzs) and the Wnt signaling regulators, the secreted frizzled-related proteins (Sfrps), during rodent lens development. RT-PCR showed that Fz receptors, Fz1-Fz8 are expressed in lens. In situ hybridization showed that all the Fz genes examined have similar expression patterns. Fzs are expressed throughout the early lens primordium. At embryonic day 14.5 (E14.5), Fz gene expression is predominantly localized to the epithelium and elongating cells at the lens equator. Fz expression is absent from lens fibers. This pattern of Fz gene expression continues throughout early postnatal development. Immunolocalization studies showed that Fz protein distribution closely follows that of the mRNAs. In addition, epithelial cells in FGF-treated explants show strongest Fz reactivity in cellular protrusions as they migrate and elongate. Sfrp1- Sfrp5 are expressed and all, except Sfrp2, have similar patterns of expression to each other and to the Fzs during lens development. Sfrp2 is strongly expressed in all lens pit cells but becomes restricted to the presumptive epithelial cells of the lens vesicle. By E14.5, Sfrp2 is only present in a few cells above the lens equator. Sfrp2 is not detected in the lens at E18.5 or at later stages. This study shows that multiple Fz and Sfrp genes are expressed during lens morphogenesis and differentiation. This is consistent with a role for Wnt-Fz signaling during both embryonic and postnatal lens development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/biosíntesis , Cristalino/embriología , Receptores de Neurotransmisores/biosíntesis , Animales , Cartilla de ADN/química , ADN Complementario/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Cristalino/metabolismo , Proteínas de la Membrana/biosíntesis , Ratones , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Distribución Tisular
6.
Dev Biol ; 259(1): 48-61, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12812787

RESUMEN

The differentiation of epithelial cells and fiber cells from the anterior and posterior compartments of the lens vesicle, respectively, give the mammalian lens its distinctive polarity. While much progress has been made in understanding the molecular basis of fiber differentiation, little is known about factors that govern the differentiation of the epithelium. Members of the Wnt growth factor family appear to be key regulators of epithelial differentiation in various organ systems. Wnts are ligands for Frizzled receptors and can activate several signaling pathways, of which the best understood is the Wnt/beta-catenin pathway. The presence of LDL-related protein coreceptors (LRPs) 5 or 6 has been shown to be a requirement for Wnt signaling through the beta-catenin pathway. To access the role of this signaling pathway in the lens, we analyzed mice with a null mutation of lrp6. These mice had small eyes and aberrant lenses, characterized by an incompletely formed anterior epithelium resulting in extrusion of the lens fibers into the overlying corneal stroma. We also showed that multiple Wnts, including 5a, 5b, 7a, 7b, 8a, 8b, and Frizzled receptors 1, 2, 3, 4, and 6, were detected in the lens. Expression of these molecules was generally present throughout the lens epithelium and extended into the transitional zone, where early fiber elongation occurs. In addition to both LRP5 and LRP6, we also showed the expression of other molecules involved in Wnt signaling and its regulation, including Dishevelleds, Dickkopfs, and secreted Frizzled-related proteins. Taken together, these results indicate a role for Wnt signaling in regulating the differentiation and behavior of lens cells.


Asunto(s)
Diferenciación Celular , Proteínas del Citoesqueleto/fisiología , Cristalino/citología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Proteínas de Pez Cebra , Animales , Células Epiteliales/citología , Receptores Frizzled , Proteínas Relacionadas con Receptor de LDL , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Ratones , Proteínas/fisiología , Ratas , Ratas Wistar , Receptores de LDL/fisiología , Proteínas Wnt , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...