Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Rehabil Med ; 56: jrm34141, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770700

RESUMEN

OBJECTIVE: To describe and evaluate the combination of osseointegration and nerve transfers in 3 transhumeral amputees. DESIGN: Case series. PATIENTS: Three male patients with a unilateral traumatic transhumeral amputation. METHODS: Patients received a combination of osseointegration and targeted muscle reinnervation surgery. Rehabilitation included graded weight training, range of motion exercises, biofeedback, table-top prosthesis training, and controlling the actual device. The impairment in daily life, health-related quality of life, and pain before and after the intervention was evaluated in these patients. Their shoulder range of motion, prosthesis embodiment, and function were documented at a 2- to 5-year follow-up. RESULTS: All 3 patients attended rehabilitation and used their myoelectric prosthesis on a daily basis. Two patients had full shoulder range of motion with the prosthesis, while the other patient had 55° of abduction and 45° of anteversion. They became more independent in their daily life activities after the intervention and incorporated their prosthesis into their body scheme to a high extent. CONCLUSION: These results indicate that patients can benefit from the combined procedure. However, the patients' perspective, risks of the surgical procedures, and the relatively long rehabilitation procedure need to be incorporated in the decision-making.


Asunto(s)
Amputados , Miembros Artificiales , Transferencia de Nervios , Oseointegración , Rango del Movimiento Articular , Humanos , Masculino , Oseointegración/fisiología , Adulto , Amputados/rehabilitación , Transferencia de Nervios/métodos , Rango del Movimiento Articular/fisiología , Biónica , Resultado del Tratamiento , Músculo Esquelético , Persona de Mediana Edad , Húmero/cirugía , Calidad de Vida , Amputación Traumática/rehabilitación , Amputación Traumática/cirugía , Actividades Cotidianas
2.
Microsurgery ; 43(7): 717-721, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37349939

RESUMEN

Distal nerve transfers to restore elbow flexion have become standard of care in brachial plexus reconstruction. The purpose of this report is to draw attention to intractable co-contraction as a rare but significant adverse event of distal nerve transfers. Here we report of treatment of a disabling co-contraction of the brachialis muscle and wrist/finger flexors after median to brachialis fascicular transfer in a 61-year-old male patient. The primary injury was an postganglionic lesion of roots C5/C6 and a preganglionic injury of C7/C8 with intact root Th1 after a motor bicycle accident. After upper brachial plexus reconstruction (C5/C6 to suprascapular nerve and superior trunk) active mobility in the shoulder joint (supraspinatus, deltoid) could be restored. However, due to lacking motor recovery of elbow flexion the patient underwent additional median to brachialis nerve transfer. Shortly after, active elbow flexion commenced with rapid recovery to M4 at 9 months postoperatively. However, despite intensive EMG triggered physiotherapy the patient could not dissociate hand from elbow function and was debilitated by this iatrogenic co-contraction. After preoperative ultrasound-guided block resulted in preserved biceps function, the previously transferred median nerve fascicle was reversed. This was done by dissecting the previous nerve transfer of the median nerve fascicle to the brachialis muscle branch and adapting the fascicles to their original nerve. Postoperatively, the patient was followed up for 10 months without a complication and maintained M4 elbow flexion with independent strong finger flexion. Distal nerve transfers are an excellent option to restore function, however, in some patients cognitive limitations may prevent cortical reorganization and lead to disturbing co-contractions.

3.
J Pers Med ; 13(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109045

RESUMEN

Negative expectations regarding nerve reconstruction in the elderly prevail in the literature, but little is known about the effectiveness of nerve transfers in patients with brachial plexus injuries aged over 60 years. We present a series of five patients (1 female, 4 male) aged between 60 and 81 years (median 62.0 years) who underwent nerve reconstruction using multiple nerve transfers in brachial plexopathies. The etiology of brachial plexus injury was trauma (n = 2), or iatrogenic, secondary to spinal surgical laminectomy, tumor excision and radiation for breast cancer (n = 3). All but one patient underwent a one-stage reconstruction including neurolysis and extra-anatomical nerve transfer alone (n = 2) or combined with anatomical reconstruction by sural nerve grafts (n = 2). One patient underwent a two-stage reconstruction, which involved a first stage anatomical brachial plexus reconstruction followed by a second stage nerve transfer. Neurotizations were performed as double (n = 3), triple (n = 1) or quadruple (n = 1) nerve or fascicular transfers. Overall, at least one year postoperatively, successful results, characterized by a muscle strength of M3 or more, were restored in all cases, two patients even achieving M4 grading in the elbow flexion. This patient series challenges the widely held dogma that brachial plexus reconstruction in older patients will produce poor outcomes. Distal nerve transfers are advantageous as they shorten the reinnervation distance. Healthy, more elderly patients should be judiciously offered the whole spectrum of reconstructive methods and postoperative rehabilitation concepts to regain useful arm and hand function and thus preserve independence after a traumatic or nontraumatic brachial plexus injury.

4.
Handchir Mikrochir Plast Chir ; 55(2): 140-147, 2023 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-37023761

RESUMEN

The treatment of peripheral nerve pathologies requires a rapid and precise diagnosis. However, the correct identification of nerve pathologies is often difficult and valuable time is lost in the process. In this position paper of the German-Speaking Group for Microsurgery of Peripheral Nerves and Vessels (DAM), we describe the current evidence for various perioperative diagnostics for the detection of traumatic peripheral nerve lesions or compression syndromes. In detail, we evaluated the importance of clinical examinations, electrophysiology, nerve ultrasound and magnetic resonance neurography. Additionally, we surveyed our members for their diagnostic approach in this regard. The statements are based on a consensus workshop on the 42nd meeting of the DAM in Graz, Austria.


Asunto(s)
Microcirugia , Nervios Periféricos , Humanos , Síndrome , Nervios Periféricos/cirugía , Austria , Imagen por Resonancia Magnética
5.
IEEE Trans Biomed Eng ; 70(2): 459-469, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881594

RESUMEN

Achieving robust, intuitive, simultaneous and proportional control over multiple degrees of freedom (DOFs) is an outstanding challenge in the development of myoelectric prosthetic systems. Since the priority in myoelectric prosthesis solutions is robustness and stability, their number of functions is usually limited. OBJECTIVE: Here, we introduce a system for intuitive concurrent hand and wrist control, based on a robust feature-extraction protocol and machine-learning. METHODS: Using the mean absolute value of high-density EMG, we train a ridge-regressor (RR) on only the sustained portions of the single-DOF contractions and leverage the regressor's inherent ability to provide simultaneous multi-DOF estimates. In this way, we robustly capture the amplitude information of the inputs while harnessing the power of the RR to extrapolate otherwise noisy and often overfitted estimations of dynamic portions of movements. RESULTS: The real-time evaluation of the system on 13 able-bodied participants and an amputee shows that almost all single-DOF tasks could be reached (96% success rate), while at the same time users were able to complete most of the two-DOF (62%) and even some of the very challenging three-DOF tasks (37%). To further investigate the translational potential of the approach, we reduced the original 192-channel setup to a 16-channel configuration and the observed performance did not deteriorate. Notably, the amputee performed similarly well to the other participants, according to all considered metrics. CONCLUSION: This is the first real-time operated myocontrol system that consistently provides intuitive simultaneous and proportional control over 3-DOFs of wrist and hand, relying on only surface EMG signals from the forearm. SIGNIFICANCE: Focusing on reduced complexity, a real-time test and the inclusion of an amputee in the study demonstrate the translational potential of the control system for future applications in prosthetic control.


Asunto(s)
Miembros Artificiales , Muñeca , Humanos , Mano , Articulación de la Muñeca , Electromiografía/métodos
6.
IEEE Trans Biomed Eng ; 70(3): 789-799, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36037457

RESUMEN

OBJECTIVE: The objective clinical evaluation of user's capabilities to handle their prosthesis is done using various tests which primarily focus on the task completion speed and do not explicitly account for the potential presence of compensatory motions. Given that the excessive body compensation is a common indicator of inadequate prosthesis control, tests which include subjective observations on the quality of performed motions have been introduced. However, these metrics are then influenced by the examiner's opinions, skills, and training making them harder to standardize across patient pools and compare across different prosthetic technologies. Here we aim to objectively quantify the severity of body compensations present in myoelectric prosthetic hand users and evaluate the extent to which traditional objective clinical scores are still able to capture them. METHODS: We have instructed 9 below-elbow prosthesis users and 9 able-bodied participants to complete three established objective clinical tests: Box-and-Blocks-Test, Clothespin-Relocation-Test, and Southampton-Hand-Assessment-Procedure. During all tests, upper-body kinematics has been recorded. RESULTS: While the analysis showed that there are some correlations between the achieved clinical scores and the individual body segment travel distances and average speeds, there were only weak correlations between the clinical scores and the observed ranges of motion. At the same time, the compensations were observed in all prosthesis users and, for the most part, they were substantial across the tests. CONCLUSION: The sole reliance on the currently available objective clinical assessment methods seems inadequate as the compensatory movements are prominent in prosthesis users and yet not sufficiently accounted for.


Asunto(s)
Miembros Artificiales , Humanos , Movimiento , Movimiento (Física) , Mano , Extremidad Superior , Diseño de Prótesis , Electromiografía , Fenómenos Biomecánicos
7.
Nat Biomed Eng ; 7(4): 473-485, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34059810

RESUMEN

Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.


Asunto(s)
Miembros Artificiales , Biónica , Humanos , Diseño de Prótesis , Extremidades , Electrodos
8.
Prosthet Orthot Int ; 46(5): 408-413, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511449

RESUMEN

BACKGROUND: Wearing time of a prosthesis is regarded as an indicator for success of prosthetic rehabilitation. However, prostheses are frequently worn for esthetic purposes only. Although different supervised measurements to assess prosthetic dexterity are used, it is not clear how performance in such tests translates into actual use in everyday life. OBJECTIVES: To evaluate the actual daily use of the prosthetic device in patients with below-elbow amputations by recording the number of grasping motions. STUDY DESIGN: Observational study. METHODS: Upper extremity function was evaluated using different objective and timed assessments in five unilateral patients with below-elbow amputations. In addition, patients reported daily wearing time, and the number of performed prosthetic movements over a period of at least three months was recorded. RESULTS: The patients achieved a mean Southampton Hand Assessment Procedure score of 66.60 ± 18.64 points. The average blocks moved in the Box and Block Test were 20.80 ± 7.46, and the mean score in the Action Research Arm Test was 37.20 ± 5.45. The mean time for the Clothespin-Relocation Test was 26.90 ± 11.61 seconds. The patients reported a wearing time of an average of 12.80 ± 3.11 hours per day. The mean number of prosthetic motions performed each day was 257.23 ± 192.95 with a range from 23.07 to 489.13. CONCLUSIONS: Neither high functionality nor long wearing times necessitated frequent use of a prosthesis in daily life. However, frequent daily motions did translate into good functional scores, indicating that regular device use in different real-life settings relates to functionality.


Asunto(s)
Miembros Artificiales , Codo , Amputación Quirúrgica/rehabilitación , Mano , Humanos , Diseño de Prótesis , Extremidad Superior
9.
Clin Orthop Relat Res ; 480(6): 1191-1204, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202032

RESUMEN

BACKGROUND: Currently used prosthetic solutions in upper extremity amputation have limited functionality, owing to low information transfer rates of neuromuscular interfacing. Although surgical innovations have expanded the functional potential of the residual limb, available interfaces are inefficacious in translating this potential into improved prosthetic control. There is currently no implantable solution for functional interfacing in extremity amputation which offers long-term stability, high information transfer rates, and is applicable for all levels of limb loss. In this study, we presented a novel neuromuscular implant, the the Myoelectric Implantable Recording Array (MIRA). To our knowledge, it is the first fully implantable system for prosthetic interfacing with a large channel count, comprising 32 intramuscular electrodes. QUESTIONS/PURPOSES: The purpose of this study was to evaluate the MIRA in terms of biocompatibility, functionality, and feasibility of implantation to lay the foundations for clinical application. This was achieved through small- and large-animal studies as well as test surgeries in a human cadaver. METHODS: We evaluated the biocompatibility of the system's intramuscular electromyography (EMG) leads in a rabbit model. Ten leads as well as 10 pieces of a biologically inert control material were implanted into the paravertebral muscles of four animals. After a 3-month implantation, tissue samples were taken and histopathological assessment performed. The probes were scored according to a protocol for the assessment of the foreign body response, with primary endpoints being inflammation score, tissue response score, and capsule thickness in µm. In a second study, chronic functionality of the full system was evaluated in large animals. The MIRA was implanted into the shoulder region of six dogs and three sheep, with intramuscular leads distributed across agonist and antagonist muscles of shoulder flexion. During the observation period, regular EMG measurements were performed. The implants were removed after 5 to 6 months except for one animal, which retained the implant for prolonged observation. Primary endpoints of the large-animal study were mechanical stability, telemetric capability, and EMG signal quality. A final study involved the development of test surgeries in a fresh human cadaver, with the goal to determine feasibility to implant relevant target muscles for prosthetic control at all levels of major upper limb amputation. RESULTS: Evaluation of the foreign body reaction revealed favorable biocompatibility and a low-grade tissue response in the rabbit study. No differences regarding inflammation score (EMG 4.60 ± 0.97 [95% CI 4.00 to 5.20] versus control 4.20 ± 1.48 [95% CI 3.29 to 5.11]; p = 0.51), tissue response score (EMG 4.00 ± 0.82 [95% CI 3.49 to 4.51] versus control 4.00 ± 0.94 [95% CI 3.42 to 4.58]; p > 0.99), or thickness of capsule (EMG 19.00 ± 8.76 µm [95% CI 13.57 to 24.43] versus control 29.00 ± 23.31 µm [95% CI 14.55 to 43.45]; p = 0.29) were found compared with the inert control article (high-density polyethylene) after 3 months of intramuscular implantation. Throughout long-term implantation of the MIRA in large animals, telemetric communication remained unrestricted in all specimens. Further, the implants retained the ability to record and transmit intramuscular EMG data in all animals except for two sheep where the implants became dislocated shortly after implantation. Electrode impedances remained stable and below 5 kΩ. Regarding EMG signal quality, there was little crosstalk between muscles and overall average signal-to-noise ratio was 22.2 ± 6.2 dB. During the test surgeries, we found that it was possible to implant the MIRA at all major amputation levels of the upper limb in a human cadaver (the transradial, transhumeral, and glenohumeral levels). For each level, it was possible to place the central unit in a biomechanically stable environment to provide unhindered telemetry, while reaching the relevant target muscles for prosthetic control. At only the glenohumeral level, it was not possible to reach the teres major and latissimus dorsi muscles, which would require longer lead lengths. CONCLUSION: As assessed in a combination of animal model and cadaver research, the MIRA shows promise for clinical research in patients with limb amputation, where it may be employed for all levels of major upper limb amputation to provide long-term stable intramuscular EMG transmission. CLINICAL RELEVANCE: In our study, the MIRA provided high-bandwidth prosthetic interfacing through intramuscular electrode sites. Its high number of individual EMG channels may be combined with signal decoding algorithms for accessing spinal motor neuron activity after targeted muscle reinnervation, thus providing numerous degrees of freedom. Together with recent innovations in amputation surgery, the MIRA might enable improved control approaches for upper limb amputees, particularly for patients with above-elbow amputation where the mismatch between available control signals and necessary degrees of freedom for prosthetic control is highest.


Asunto(s)
Miembros Artificiales , Animales , Cadáver , Perros , Electrodos Implantados , Electromiografía , Estudios de Factibilidad , Humanos , Inflamación , Conejos , Ovinos
10.
J Hand Ther ; 35(1): 58-66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33250398

RESUMEN

STUDY DESIGN: This is a Delphi study based on a scoping literature review. INTRODUCTION: Targeted muscle reinnervation (TMR) enables patients with high upper limb amputations to intuitively control a prosthetic arm with up to six independent control signals. Although there is a broad agreement regarding the importance of structured motor learning and prosthetic training after such nerve transfers, to date, no evidence-based protocol for rehabilitation after TMR exists. PURPOSE OF THE STUDY: We aimed at developing a structured rehabilitation protocol after TMR surgery after major upper limb amputation. The purpose of the protocol is to guide clinicians through the full rehabilitation process, from presurgical patient education to functional prosthetic training. METHODS: European clinicians and researchers working in upper limb prosthetic rehabilitation were invited to contribute to a web-based Delphi study. Within the first round, clinical experts were presented a summary of recent literature and were asked to describe the rehabilitation steps based on their own experience and scientific evidence. The second round was used to refine these steps, while the importance of each step was rated within the third round. RESULTS: Experts agreed on a rehabilitation protocol that consists of 16 steps and starts before surgery. It is based on two overarching principles, namely the necessity of multiprofessional teamwork and a careful selection and education of patients within the rehabilitation team. Among the different steps in therapy, experts rated the training with electromyographic biofeedback as the most important one. DISCUSSION: Within this study, a first rehabilitation protocol for TMR patients based on a broad experts' consensus and relevant literature could be developed. The detailed steps for rehabilitation start well before surgery and prosthetic fitting, and include relatively novel interventions as motor imagery and biofeedback. Future studies need to further investigate the clinical outcomes and thereby improve therapists' practice. CONCLUSION: Graded rehabilitation offered by a multiprofessional team is needed to enable individuals with upper limb amputations and TMR to fully benefit from prosthetic reconstruction. LEVEL OF EVIDENCE: Low.


Asunto(s)
Amputados , Miembros Artificiales , Amputación Quirúrgica/rehabilitación , Amputados/rehabilitación , Brazo , Biorretroalimentación Psicológica , Electromiografía , Humanos , Músculo Esquelético , Extremidad Superior
11.
Disabil Rehabil ; 44(14): 3708-3713, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33377803

RESUMEN

PURPOSE: There is a large body of evidence demonstrating high rates of prosthesis abandonment in the upper extremity. However, these surveys were conducted years ago, thus the influence of recent refinements in prosthetic technology on acceptance is unknown. This study aims to gather current data on prosthetic usage, to assess the effects of these advancements. MATERIALS AND METHODS: A questionnaire was sent to 68 traumatic upper limb amputees treated within the Austrian Trauma Insurance Agency between the years 1996 and 2016. Responses were grouped by the year of amputation to assess the effect of time. RESULTS: The rejection rate at all levels of amputation was 44%. There was no significant difference in acceptance between responders amputated before or after 2006 (p = 0.939). Among users, 92.86% (n = 13) used a myoelectric, while only one amputee (7.14%, n = 1) used a body-powered device. Most responders complained about the comfort (60.87%, n = 14) as well as the weight of the device (52.17%, n = 12). CONCLUSIONS: The advancements of the last decade in the arena of upper limb prosthetics have not yet achieved a significant change in prosthetic abandonment within this study cohort. Although academic solutions have been presented to tackle patient's complaints, clinical reality still shows high rejection rates of cost-intensive prosthetic devices.Implications for rehabilitationAbandonment rates in prosthetic rehabilitation after upper limb amputation have shown to be 50% and higher.The advancements of the last decade in the arena of upper limb prosthetics have not yet achieved a significant change in prosthetic abandonment.Well-structured and patient-tailored prosthetic training as well as ensuring the amputee's active participation in the decision making process will most likely improve prosthetic acceptance.


Asunto(s)
Amputados , Miembros Artificiales , Amputación Quirúrgica/rehabilitación , Amputados/rehabilitación , Humanos , Encuestas y Cuestionarios , Extremidad Superior/cirugía
12.
J Vis Exp ; (176)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34779428

RESUMEN

Targeted Muscle Reinnervation (TMR) improves the biological control interface for myoelectric prostheses after above-elbow amputation. Selective activation of muscle units is made possible by surgically re-routing nerves, yielding a high number of independent myoelectric control signals. However, this intervention requires careful patient selection and specific rehabilitation therapy. Here a rehabilitation protocol is presented for high-level upper limb amputees undergoing TMR, based on an expert Delphi study. Interventions before surgery include detailed patient assessment and general measures for pain control, muscle endurance and strength, balance, and range of motion of the remaining joints. After surgery, additional therapeutic interventions focus on edema control and scar treatment and the selective activation of cortical areas responsible for upper limb control. Following successful reinnervation of target muscles, surface electromyographic (sEMG) biofeedback is used to train the activation of the novel muscular units. Later on, a table-top prosthesis may provide the first experience of prosthetic control. After fitting the actual prosthesis, training includes repetitive drills without objects, object manipulation, and finally, activities of daily living. Ultimately, regular patient appointments and functional assessments allow tracking prosthetic function and enabling early interventions if malfunctioning.


Asunto(s)
Amputados , Miembros Artificiales , Transferencia de Nervios , Actividades Cotidianas , Amputados/rehabilitación , Humanos , Músculo Esquelético/inervación , Músculo Esquelético/cirugía , Transferencia de Nervios/métodos , Extremidad Superior/cirugía
13.
Front Neurorobot ; 15: 645261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994986

RESUMEN

Brachial plexus injuries with multiple-root involvement lead to severe and long-lasting impairments in the functionality and appearance of the affected upper extremity. In cases, where biologic reconstruction of hand and arm function is not possible, bionic reconstruction may be considered as a viable clinical option. Bionic reconstruction, through a careful combination of surgical augmentation, amputation, and prosthetic substitution of the functionless hand, has been shown to achieve substantial improvements in function and quality of life. However, it is known that long-term distortions in the body image are present in patients with severe nerve injury as well as in prosthetic users regardless of the level of function. To date, the body image of patients who voluntarily opted for elective amputation and prosthetic reconstruction has not been investigated. Moreover, the degree of embodiment of the prosthesis in these patients is unknown. We have conducted a longitudinal study evaluating changes of body image using the patient-reported Body Image Questionnaire 20 (BIQ-20) and a structured questionnaire about prosthetic embodiment. Six patients have been included. At follow up 2.5-5 years after intervention, a majority of patients reported better BIQ-20 scores including a less negative body evaluation (5 out of 6 patients) and higher vital body dynamics (4 out of 6 patients). Moreover, patients described a strong to moderate prosthesis embodiment. Interestingly, whether patients reported performing bimanual tasks together with the prosthetic hand or not, did not influence their perception of the prosthesis as a body part. In general, this group of patients undergoing prosthetic substitution after brachial plexus injury shows noticeable inter-individual differences. This indicates that the replacement of human anatomy with technology is not a straight-forward process perceived in the same way by everyone opting for it.

14.
Prosthet Orthot Int ; 45(1): 76-80, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33834747

RESUMEN

CASE DESCRIPTION: Osseointegration is a relatively new technique for prosthetic limb attachment that offers various improvements for patients with amputation and facilitates joint preservation. We present a case of implant loosening during rehabilitation in a patient with transtibial amputation that was successfully managed through a combination of measures, aiming to promote re-osseointegration of the implant. OBJECTIVES: Not much is known about structured management of adverse events after osseointegration. Septic or aseptic loosening is currently regarded as implant failure, prompting removal and possible re-implantation at a later stage. The objective of this case report was to evaluate the feasibility of salvaging a loosened implant. STUDY DESIGN: Case report. TREATMENT: A novel treatment approach was employed to enable renewed osseointegration of the implant. First, the bone-implant interface was disrupted and renewed through axial rotation and distal repositioning of the implant. Afterwards, extracorporal shockwave therapy and antibiotic treatment were administered. Prosthetic rehabilitation was then started anew. Regular follow-up x-rays and clinical evaluations were conducted, including standardized outcome tests. OUTCOMES: These combined measures led to a successful re-osseointegration of the implant. In a 21-month follow-up, the patient regained a stable and secure gait pattern, using his prosthesis every day for 15 hours and scoring above average on standardized outcome measures. CONCLUSION: This represents the first report of implant salvage after failed primary osseointegration. As the associated risks of this novel treatment are very low, investigations are warranted to evaluate this approach on a larger scale.


Asunto(s)
Miembros Artificiales , Oseointegración , Amputación Quirúrgica , Humanos , Diseño de Prótesis , Implantación de Prótesis , Resultado del Tratamiento
15.
Front Rehabil Sci ; 2: 804376, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36188841

RESUMEN

Introduction: Many adults who had a severe Narakas IV obstetric brachial plexus injury (OBPI) suffer from extensive impairments in daily living due to limited hand-arm function. The dramatic loss of axonal support at this very early age of development often render the entire extremity a biologic wasteland and reconstructive methods and therapies often fail to recover any functional hand use. In this scenario bionic reconstruction, including an elective amputation and a subsequent prosthetic fitting, may enable functional improvement in adults suffering from the consequences of such severe brachial plexus injuries. We here describe our experience in treating such patients and lay out the surgical rational and rehabilitation protocol exemplified in one patient. Case Presentation/Methods: A 27-year-old adult with a unilateral OBPI contacted our center. He presented with globally diminished function of the affected upper extremity with minimal hand activity, resulting in an inability to perform various tasks of daily living. No biological reconstructive efforts were available to restore meaningful hand function. An interdisciplinary evaluation, including a psychosocial assessment, was used to assess eligibility for bionic reconstruction. Before the amputation and after the prosthetic fitting functional assessments and self-reported questionnaires were performed. Results: One month after the amputation and de-rotation osteotomy of the humerus the patient was fitted with a myoelectric prosthesis. At the 1.5 year-follow-up assessment, the patient presented with a distinct improvement of function: the ARAT improved from 12 to 20 points, SHAP score improved from 8 to 29, and the DASH value improved from 50 to 11.7. The average wearing times of the prosthesis were 5 to 6 h per day (on 4-5 days a week). Discussion: The options for adults suffering from the consequences of severe OBPIs to improve function are limited. In selected patients in whom the neurological deficit is so severe that biologic hand function is unsatisfactory, an elective amputation and subsequent restoration of the hand with mechatronic means may be an option. The follow-up results indicate that this concept can indeed lead to solid hand function and independence in daily activities after amputation, subsequent prosthetic fitting, and rehabilitation.

16.
J Neurol Neurosurg Psychiatry ; 91(8): 879-888, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32487526

RESUMEN

Neuralgic amyotrophy (NA), also known as Parsonage-Turner syndrome, is characterised by sudden pain attacks, followed by patchy muscle paresis in the upper extremity. Recent reports have shown that incidence is much higher than previously assumed and that the majority of patients never achieve full recovery. Traditionally, the diagnosis was mainly based on clinical observations and treatment options were confined to application of corticosteroids and symptomatic management, without proven positive effects on long-term outcomes. These views, however, have been challenged in the last years. Improved imaging methods in MRI and high-resolution ultrasound have led to the identification of structural peripheral nerve pathologies in NA, most notably hourglass-like constrictions. These pathognomonic findings have paved the way for more accurate diagnosis through high-resolution imaging. Furthermore, surgery has shown to improve clinical outcomes in such cases, indicating the viability of peripheral nerve surgery as a valuable treatment option in NA. In this review, we present an update on the current knowledge on this disease, including pathophysiology and clinical presentation, moving on to diagnostic and treatment paradigms with a focus on recent radiological findings and surgical reports. Finally, we present a surgical treatment algorithm to support clinical decision making, with the aim to encourage translation into day-to-day practice.


Asunto(s)
Neuritis del Plexo Braquial/diagnóstico , Neuritis del Plexo Braquial/patología , Neuritis del Plexo Braquial/cirugía , Diagnóstico Diferencial , Humanos , Nervios Periféricos/patología , Nervios Periféricos/cirugía
17.
J Clin Med ; 9(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861941

RESUMEN

Global brachial plexopathies including multiple nerve root avulsions may result in complete upper limb paralysis despite surgical treatment. Bionic reconstruction, which includes the elective amputation of the functionless hand and its replacement with a mechatronic device, has been described for the transradial level. Here, we present for the first time that patients with global brachial plexus avulsion injuries and lack of biological shoulder and elbow function benefit from above-elbow amputation and prosthetic rehabilitation. Between 2012 and 2017, forty-five patients with global brachial plexus injuries approached our centre, of which nineteen (42.2%) were treated with bionic reconstruction. While fourteen patients were amputated at the transradial level, the entire upper limb was replaced with a prosthetic arm in a total of five patients. Global upper extremity function before and after bionic arm substitution was assessed using two objective hand function tests, the action research arm test (ARAT), and the Southampton hand assessment procedure (SHAP). Other outcome measures included the DASH questionnaire, VAS to assess deafferentation pain and the SF-36 health survey to evaluate changes in quality of life. Using a hybrid prosthetic arm mean ARAT scores improved from 0.6 ± 1.3 to 11.0 ± 6.7 (p = 0.042) and mean SHAP scores increased from 4.0 ± 3.7 to 13.8 ± 9.2 (p = 0.058). After prosthetic arm replacement mean DASH scores improved from 52.5 ± 9.4 to 31.2 ± 9.8 (p = 0.003). Deafferentation pain decreased from mean VAS 8.5 ± 1.0 to 6.7 ± 2.1 (p = 0.055), while the physical and mental component summary scale as part of the SF-36 health survey improved from 32.9 ± 6.4 to 40.4 ± 9.4 (p = 0.058) and 43.6 ± 8.9 to 57.3 ± 5.5 (p = 0.021), respectively. Bionic reconstruction can restore simple but robust arm and hand function in longstanding brachial plexus patients with lack of treatment alternatives.

18.
Plast Reconstr Surg ; 144(6): 1037e-1043e, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31764652

RESUMEN

BACKGROUND: Although the distal targets have been lost in proximal upper limb amputees, the neural signals for intuitive hand and arm function are still available and thus can be incorporated into more useful prosthetic function using targeted muscle reinnervation technique. In this article, the authors present their outcomes and range of indications in addition to experiences and pitfalls after 30 targeted muscle reinnervation cases at above-elbow and shoulder disarticulation level of amputation. METHODS: Thirty patients with above-elbow or shoulder disarticulation amputations were enrolled between 2012 and 2017. Indications for targeted muscle reinnervation surgery differed between improvement of prosthetic function (n = 19) and/or pain (n = 11). Functional outcome was evaluated with the Action Research Arm Test, the Southampton Hand Assessment Procedure, and the Clothespin-Relocation Test. Functional evaluation was performed at least at 6 months after final prosthetic fitting. RESULTS: All nerve transfers were successful and provided independent myoelectric signals. The 10 patients available for final functional evaluation showed Action Research Arm Test scores of 20.4 ± 1.9 and Southampton Hand Assessment Procedure scores of 40.5 ± 8.1. The Clothespin-Relocation Test showed a mean time of 34.3 ± 14.4 seconds. CONCLUSIONS: Targeted muscle reinnervation has improved prosthetic control and revolutionized neuroma treatment in upper limb amputees. Still, the rate of abandonment even after targeted muscle reinnervation surgery has been shown high, and several advances within the biotechnological interface will be needed to improve prosthetic function and acceptance in these patients. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Asunto(s)
Amputación Quirúrgica/métodos , Amputación Traumática/cirugía , Brazo/inervación , Músculo Esquelético/inervación , Transferencia de Nervios/métodos , Accidentes de Tránsito , Adolescente , Adulto , Amputación Quirúrgica/rehabilitación , Muñones de Amputación/inervación , Amputación Traumática/rehabilitación , Brazo/cirugía , Humanos , Anomalías Linfáticas/cirugía , Masculino , Regeneración Nerviosa/fisiología , Transferencia de Nervios/rehabilitación , Resultado del Tratamiento , Malformaciones Vasculares/cirugía , Adulto Joven
19.
J Vis Exp ; (151)2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31609322

RESUMEN

In patients with global brachial plexus injury and lack of biological treatment alternatives, bionic reconstruction, including the elective amputation of the functionless hand and its replacement with a prosthesis, has recently been described. Optimal prosthetic function depends on a structured rehabilitation protocol, as residual muscle activity in a patient's arm is later translated into prosthetic function. Surface electromyographic (sEMG) biofeedback has been used during rehabilitation after stroke, but has so far not been used in patients with complex peripheral nerve injuries. Here, we present our rehabilitation protocol implemented in patients with global brachial plexus injuries suitable for bionic reconstruction, starting from identification of sEMG signals to final prosthetic training. This structured rehabilitation program facilitates motor relearning, which may be a cognitively debilitating process after complex nerve root avulsion injuries, aberrant re-innervation and extra-anatomical reconstruction (as is the case with nerve transfer surgery). The rehabilitation protocol using sEMG biofeedback aids in the establishment of new motor patterns as patients are being made aware of the advancing re-innervation process of target muscles. Additionally, faint signals may also be trained and improved using sEMG biofeedback, rendering a clinically "useless" muscle (exhibiting muscle strength M1 on the British Medical Research Council [BMRC] scale) eligible for dexterous prosthetic hand control. Furthermore, functional outcome scores after successful bionic reconstruction are presented in this article.


Asunto(s)
Biorretroalimentación Psicológica/métodos , Plexo Braquial/lesiones , Electromiografía/métodos , Músculo Esquelético/fisiología , Adulto , Biónica , Humanos , Masculino , Transferencia de Nervios/métodos , Resultado del Tratamiento , Heridas y Lesiones/rehabilitación
20.
J Vis Exp ; (150)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31475970

RESUMEN

After severe nerve injuries, selective nerve transfers provide an opportunity to restore motor and sensory function. Functional recovery depends both on the successful re-innervation of the targets in the periphery and on the motor re-learning process entailing cortical plasticity. While there is an increasing number of methods to improve rehabilitation, their routine implementation in a clinical setting remains a challenge due to their complexity and long duration. Therefore, recommendations for rehabilitation strategies are presented with the aim of guiding medical doctors and therapists through the long-lasting rehabilitation process and providing step-by-step instructions for supporting motor re-learning. Directly after nerve transfer surgery, no motor function is present, and therapy should focus on promoting activity in the sensory-motor cortex areas of the paralyzed body part. After about two to six months (depending on the severity and modality of injury, the distance of nerve regeneration and many other factors), the first motor activity can be detected via electromyography (EMG). Within this phase of rehabilitation, multimodal feedback is used to re-learn the motor function. This is especially critical after nerve transfers, as muscle activation patterns change due to the altered neural connection. Finally, muscle strength should be sufficient to overcome gravity/resistance of antagonistic muscles and joint stiffness, and more functional tasks can be implemented in rehabilitation.


Asunto(s)
Actividad Motora/fisiología , Transferencia de Nervios/rehabilitación , Rehabilitación Neurológica/métodos , Electromiografía , Retroalimentación Sensorial/fisiología , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Regeneración Nerviosa/fisiología , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...