Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750021

RESUMEN

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Núcleo Celular , Cromatina , Células Madre Mesenquimatosas , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Citocalasina D/farmacología , Histonas/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Ratones , Ensamble y Desensamble de Cromatina
2.
Obes Facts ; 17(2): 145-157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224679

RESUMEN

INTRODUCTION: Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS: Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS: Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid ß-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS: Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.


Asunto(s)
Adiposidad , Osteoporosis , Ratones , Animales , Femenino , Médula Ósea/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Peso Corporal , Osteoporosis/metabolismo , Dieta Alta en Grasa/efectos adversos
3.
Cureus ; 14(8): e27854, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36110458

RESUMEN

Capable of generating excess catecholamines, untreated extra-adrenal paragangliomas (PGLs) result in severe cardiovascular morbidity and mortality. Increasingly, a hereditary basis can be identified to underlie PGLs, though such data are largely absent in populations of non-European descent. We present two patients with PGL, both exhibiting similar age, sex, and geographic ancestry. Our patients are unrelated, Kinyarwanda-speaking females from the Democratic Republic of the Congo. The first patient presented with lower extremity edema and poorly controlled hypertension and was found to have multifocal PGL in the abdomen and bladder, proven by biopsy and treated with surgical excision. Our second patient presented with palpitations, shortness of breath, headache, and hypertension, was found to have mediastinal PGL, and underwent surgical excision. Genetic testing was negative in both cases. The first patient has not shown recurrence based on active surveillance with imaging and biochemical testing. There is a concern for recurrence in the second patient, eight years after diagnosis, which is currently being investigated. Our second patient lived at a high altitude for most of her life, pointing toward a possible role of hypoxia in the pathogenesis of her tumor development. Our cases raise questions that require active inquiry regarding additional environmental and/or genetic factors that might predispose to PGLs in uncommon anatomic sites and in understudied, vulnerable populations.

4.
Exp Biol Med (Maywood) ; 247(24): 2213-2222, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35983849

RESUMEN

All organisms exist within a physical space and respond to physical forces as part of daily life. In higher organisms, the skeleton is critical for locomotion in the physical environment, providing a carapace upon which the animal can move to accomplish functions necessary for living. As such, the skeleton has responded evolutionarily, and does in real-time, to physical stresses placed on it to ensure that its structure supports its function in the sea, in the air, and on dry land. In this article, we consider how those cells responsible for remodeling skeletal structure respond to mechanical force including load magnitude, frequency, and cyclicity, and how force rearranges cellular structure in turn. The effects of these forces to balance the mesenchymal stem cell supply of bone-forming osteoblasts and energy storing adipocytes are addressed. That this phenotypic switching is achieved at the level of both gene transactivation and alteration of structural epigenetic controls of gene expression is considered. Finally, as clinicians, we consider this information as it applies to a prescriptive for intelligent exercise.


Asunto(s)
Huesos , Células Madre Mesenquimatosas , Animales , Osteoblastos , Ejercicio Físico
5.
Stem Cells ; 40(4): 423-434, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35278073

RESUMEN

Mesenchymal stem cells (MSCs) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, ß-catenin, and yes-associated protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles × 2%) and static (1 × 2% hold) strain on nuclear translocation of ß-catenin and YAP1 at 3 hours after force application. Dynamic strain induced nuclear accumulation of ß-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced ß-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid did not increase nuclear content of ß-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds ß-catenin, we considered whether ß-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both ß-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of ß-catenin via mechanisms used for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, ß-catenin, and YAP1.


Asunto(s)
Células Madre Mesenquimatosas , beta Catenina , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Madre Mesenquimatosas/metabolismo , beta Catenina/metabolismo
6.
Semin Cell Dev Biol ; 123: 22-35, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34489173

RESUMEN

Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.


Asunto(s)
Osteoartritis , Osteoporosis , Adipocitos , Anciano , Envejecimiento , Ejercicio Físico , Humanos , Osteoartritis/terapia , Osteoblastos , Estudios Prospectivos
7.
J Endocr Soc ; 5(5): bvab018, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33855252

RESUMEN

CONTEXT: The contribution of lumbar scoliosis to osteoporosis is unknown. OBJECTIVE: This work aimed to determine the prevalence and relationship of lumbar scoliosis to osteoporosis in aging women. METHODS: A cross-sectional analysis used dual-energy x-ray absorptiometry (DXA) scans of randomly selected groups of postmenopausal women (64-68, 74-78, and 84-88 years; N = 300 each) in a university teaching hospital from 2014 to 2019. Lumbar Cobb angle was tested for an association to femoral neck (FN), total hip (TH), and spine T score, age, weight, and ethnicity. Logistic regression tested an association between scoliosis (Cobb angle > 10°) and osteoporosis (T score ≤ -2.5). Available sequential DXA scans (N = 51) were analyzed for changes in Cobb angle using a linear mixed model of these longitudinal data. RESULTS: Osteoporosis and Cobb angle both increased with age: from 22% and 4.4 (SD = 7.8) respectively in 64- to 68-year-olds to 32.9% and to 9.7 (SD = 9.2) in women age 84 to 88 years. The prevalence of clinically significant scoliosis rose from 11.5% in the youngest group, to 27.3% and 39.4% in the age 74 to 78 and 84 to 88 cohorts, respectively. Cobb angle increased 0.7° per year of follow-up. After adjusting for covariates, there was no significant association between T scores at any site (TH, FN, or spine) and Cobb angle. CONCLUSION: Based on screening DXAs, the incidence and degree of lumbar scoliosis increases significantly in women between age 65 and 85 years. There was no association between the incidence of lumbar scoliosis and FN bone density.

8.
JBMR Plus ; 5(3): e10450, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33778320

RESUMEN

Use of the selective estrogen receptor modulator Tamoxifen (TAM) is a mainstay to induce conditional expression of Cre recombinase in transgenic laboratory mice. To excise ß-catenin fl/fl in 28-day-old male and female Prrx1-CreER/ß-catenin fl/fl mice (C57BL/6), we utilized TAM at 150 mg/kg; despite ß-catenin knockout in MSC, we found a significant increase in trabecular and cortical bone volume in all genders. Because TAM was similarly anabolic in KO and control mice, we investigated a dose effect on bone formation by treating wild-type mice (WT C57BL/6, 4 weeks) with TAM (total dose 0, 20, 40, 200 mg/kg via four injections). TAM increased bone in a dose-dependent manner analyzed by micro-computed tomography (µCT), which showed that, compared to control, 20 mg/kg TAM increased femoral bone volume fraction (bone volume/total volume [BV/TV]) (21.6% ± 1.5% to 33% ± 2.5%; 153%, p < 0.005). With TAM 40 mg/kg and 200 mg/kg, BV/TV increased to 48.1% ± 4.4% (223%, p < 0.0005) and 58% ± 3.8% (269%, p < 0.0001) respectively, compared to control. Osteoblast markers increased with 200 mg/kg TAM: Dlx5 (224%, p < 0.0001), Alp (166%, p < 0.0001), Bglap (223%, p < 0.0001), and Sp7 (228%, p < 0.0001). Osteoclasts per bone surface (Oc#/BS) nearly doubled at the lowest TAM dose (20 mg/kg), but decreased to <20% control with 200 mg/kg TAM. Our data establish that use of TAM at even very low doses to excise a floxed target in postnatal mice has profound effects on trabecular and cortical bone formation. As such, TAM treatment is a major confounder in the interpretation of bone phenotypes in conditional gene knockout mouse models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

9.
JBMR Plus ; 5(2): e10438, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33615107

RESUMEN

Tumor-induced osteomalacia (TIO) is a rare cause of impaired bone mineralization mediated by the osteocyte-derived, phosphaturic hormone: fibroblast growth factor 23 (FGF23). The case is presented of a previously healthy 45-year-old man who developed fragility fractures at multiple sites (initially metatarsals, eventually ribs, hips, spine, scapula, and sacrum) resulting in rapid functional deterioration, weakness, and the inability to bear weight and ambulate without a walker. Workup for secondary causes of bone loss was negative except for mild hypogonadotropic hypogonadism with normal pituitary MRI and hypophosphatemia that persisted despite aggressive supplementation. Testosterone was initiated but discontinued 6 months later because of deep vein thrombosis and pulmonary embolism, likely provoked by his new sedentary state, in addition to smoking history and possibly testosterone usage. Serum FGF23 was nonelevated at 138 mRU/mL (44-215). A genetic panel for OI variants was negative for a causal mutation. At the age of 48, 3 years after his initial fracture, he was referred to our academic endocrine clinic. We ruled out additional mutations that lead to hypophosphatemic rickets, including phosphate-regulating endopeptidase homolog, X-linked. PET/CT looking for a potential TIO locus revealed uptake in the left suprapatellar recess. Biopsy was consistent with a phosphaturic mesenchymal tumor. FGF23 was repeated for a preoperative baseline and now found to be elevated at 289 mRU/mL. In retrospect, it is likely that the initial level was inappropriately elevated for the degree of hypophosphatemia. After resection, he experienced marked improvement in physical function, decreased pain, and resolution of renal phosphate wasting. The principals of establishing a robust clinical diagnosis of TIO should be emphasized, excluding other entities and avoiding pitfalls in the interpretation of laboratory testing. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

10.
Front Endocrinol (Lausanne) ; 12: 782194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145475

RESUMEN

Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via µCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Hueso Esponjoso/metabolismo , Fémur/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Lipodistrofia/metabolismo , Condicionamiento Físico Animal , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Animales , Peso Corporal , Médula Ósea/diagnóstico por imagen , Médula Ósea/patología , Hueso Esponjoso/diagnóstico por imagen , Diáfisis/diagnóstico por imagen , Modelos Animales de Enfermedad , Epidídimo/metabolismo , Epidídimo/patología , Fémur/diagnóstico por imagen , Lipodistrofia/diagnóstico por imagen , Lipodistrofia/genética , Lipodistrofia/patología , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Perilipina-1/genética , Microtomografía por Rayos X
11.
Curr Osteoporos Rep ; 18(6): 774-789, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33068251

RESUMEN

PURPOSE OF REVIEW: To highlight recent basic, translational, and clinical works demonstrating exercise and diet regulation of marrow adipose tissue (MAT) and bone and how this informs current understanding of the relationship between marrow adiposity and musculoskeletal health. RECENT FINDINGS: Marrow adipocytes accumulate in the bone in the setting of not only hypercaloric intake (calorie excess; e.g., diet-induced obesity) but also with hypocaloric intake (calorie restriction; e.g., anorexia), despite the fact that these states affect bone differently. With hypercaloric intake, bone quantity is largely unaffected, whereas with hypocaloric intake, bone quantity and quality are greatly diminished. Voluntary running exercise in rodents was found to lower MAT and promote bone in eucaloric and hypercaloric states, while degrading bone in hypocaloric states, suggesting differential modulation of MAT and bone, dependent upon whole-body energy status. Energy status alters bone metabolism and bioenergetics via substrate availability or excess, which plays a key role in the response of bone and MAT to mechanical stimuli. Marrow adipose tissue (MAT) is a fat depot with a potential role in-as well as responsivity to-whole-body energy metabolism. Understanding the localized function of this depot in bone cell bioenergetics and substrate storage, principally in the exercised state, will aid to uncover putative therapeutic targets for skeletal fragility.


Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Huesos/metabolismo , Dieta , Ejercicio Físico/fisiología , Adipocitos/metabolismo , Animales , Densidad Ósea/fisiología , Metabolismo Energético/fisiología , Humanos
12.
J Bone Miner Res ; 35(6): 1149-1162, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32022326

RESUMEN

During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. ß-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that ß-catenin was additive with cytoskeletal signals to prevent adipogenesis, and ß-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. ß-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with ß-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of ß-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of ß-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, ß-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to ß-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Células de la Médula Ósea , Proteína Potenciadora del Homólogo Zeste 2 , Células Madre Mesenquimatosas , beta Catenina/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Cateninas , Diferenciación Celular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Complejo Represivo Polycomb 2/metabolismo , Vía de Señalización Wnt
13.
J Bone Miner Res ; 35(1): 106-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509274

RESUMEN

Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by µCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (-121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Asunto(s)
Médula Ósea , Restricción Calórica , Adipocitos , Tejido Adiposo , Animales , Médula Ósea/diagnóstico por imagen , Huesos/diagnóstico por imagen , Femenino , Ratones
14.
Stem Cells ; 38(1): 102-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648392

RESUMEN

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Asunto(s)
Lamina Tipo B/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , NADPH Deshidrogenasa/metabolismo , Actinas/metabolismo , Animales , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , NADPH Deshidrogenasa/deficiencia , NADPH Deshidrogenasa/genética , Membrana Nuclear/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis
15.
Nat Rev Endocrinol ; 15(6): 339-355, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30814687

RESUMEN

Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with pharmacological interventions that are associated with poor adherence and adverse effects. Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predisposing the population to a range of musculoskeletal complications and metabolic disorders. Pharmacological management of obesity has yet to deliver notable reductions in weight and debilitating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive and non-pharmacological method of regulating both osteoporosis and obesity. The principal components of exercise - mechanical signals - promote bone and muscle anabolism while limiting formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage selection of their common progenitors - mesenchymal stem cells. An inverse relationship between adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to new strategies to treat chronic diseases such as osteoporosis and obesity.


Asunto(s)
Adipocitos/metabolismo , Ejercicio Físico/fisiología , Obesidad/metabolismo , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Peso Corporal/fisiología , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/terapia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/patología , Obesidad/terapia , Osteoporosis/patología , Osteoporosis/terapia , Células Madre/metabolismo
16.
J Endocr Soc ; 2(6): 563-569, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29942920

RESUMEN

A perimenopausal woman presented with palpitations, hirsutism, and inability to lose weight. Laboratory tests revealed an unusual endocrine hormonal profile including pituitary hormones (TSH, ACTH, and prolactin) below reference intervals and gonadal (testosterone) and adrenal (cortisol) hormones above reference intervals. Ultimately, after a comprehensive workup including a scheduled surgical procedure, abnormal laboratories were determined due to biotin interference. Biotin (vitamin B7) is a water-soluble vitamin and essential cofactor for the metabolism of fatty acids, glucose, and amino acids. The recommended daily intake of biotin for adults is 30 µg/d. Many over-the-counter products, particularly those marketed for hair, skin, and nail growth, contain biotin 100-fold of recommended daily intake. This case is unique due to the abnormalities observed not only in the well-described TSH "sandwich" immunoassay, but also in tests for gonadal steroids, adrenal, and pituitary hormones. Falsely high as well as falsely low results can be ascribed to biotin. Competitive immunoassays (Fig. 1A)- in this case, tests used initially for serum cortisol and testosterone- can demonstrate falsely high results. Interference falsely lowers the immunometric "sandwich" immunoassay (Fig. 1B)-in this case, TSH. Biotin effect on our patient's endocrine testing led to decidedly abnormal findings, unnecessary medical referrals and diagnostic studies, and comprehensible psychological distress. Interference with one immunoassay, TSH, persisted a full 2 weeks after discontinuation of biotin; indeed, some tests demonstrate sensitivity to lesser quantities of biotin. Improved communication between patients, health care providers, and laboratory professionals is required concerning the likelihood of biotin interference with immunoassays.

17.
J Biomech ; 74: 32-40, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29691054

RESUMEN

ßcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of ßcatenin in the cytoplasm has been well studied but ßcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of ßcatenin destruction complex element GSK3ß (glycogen synthase kinase 3ß) to increase nuclear ßcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3ß due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, ßcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of ßcatenin, resulting in decreased nuclear ßcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in ßcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of ßcatenin.


Asunto(s)
Citoesqueleto/metabolismo , Fenómenos Mecánicos , Matriz Nuclear/metabolismo , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Fenómenos Biomecánicos , Movimiento Celular , Humanos , Microtúbulos/metabolismo
18.
Clin Chem ; 64(1): 51-52, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29295837
19.
Exerc Sport Sci Rev ; 46(1): 42-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28795956

RESUMEN

Marrow mesenchymal stem cells supply bone osteoblasts and adipocytes. Exercise effects to increase bone and decrease fat involve transfer of signals from the cytoplasm into the nucleus to regulate gene expression. We propose that exercise control of stem cell fate relies on structural connections that terminate in the nucleus and involve intranuclear actin structures that regulate epigenetic gene expression.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Ejercicio Físico/fisiología , Células Madre Mesenquimatosas/citología , Actinas/fisiología , Adipocitos/fisiología , Citoesqueleto/fisiología , Expresión Génica , Humanos , Matriz Nuclear/fisiología , Osteoblastos/fisiología
20.
Bone ; 107: 172-180, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208526

RESUMEN

The quantity and quality of bone depends on osteoblastic differentiation of mesenchymal stem cells (MSCs), where adipogenic commitment depletes the available pool for osteogenesis. Cell architecture influences lineage decisions, where interfering with cytoskeletal structure promotes adipogenesis. Mechanical strain suppresses MSC adipogenesis partially through RhoA driven enhancement of cytoskeletal structure. To understand the basis of force-driven RhoA activation, we considered critical GEFs (activators) and GAPs (inactivators) on bone marrow MSC lineage fate. Knockdown of LARG accelerated adipogenesis and repressed basal RhoA activity. Importantly, mechanical activation of RhoA was almost entirely inhibited following LARG depletion, and the ability of strain to inhibit adipogenesis was impaired. Knockdown of ARHGAP18 increased basal RhoA activity and actin stress fiber formation, but did not enhance mechanical strain activation of RhoA. ARHGAP18 null MSCs exhibited suppressed adipogenesis assessed by Oil-Red-O staining and Western blot of adipogenic markers. Furthermore, ARHGAP18 knockdown enhanced osteogenic commitment, confirmed by alkaline phosphatase staining and qPCR of Sp7, Alpl, and Bglap genes. This suggests that ARHGAP18 conveys tonic inhibition of MSC cytoskeletal assembly, returning RhoA to an "off state" and affecting cell lineage in the static state. In contrast, LARG is recruited during dynamic mechanical strain, and is necessary for mechanical suppression of adipogenesis. In summary, mechanical activation of RhoA in mesenchymal progenitors is dependent on LARG, while ARHGAP18 limits RhoA delineated cytoskeletal structure in static cultures. Thus, on and off GTP exchangers work through RhoA to influence MSC fate and responses to static and dynamic physical factors in the microenvironment.


Asunto(s)
Adipogénesis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Adaptación Fisiológica/fisiología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Linaje de la Célula , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Mecánico , Proteína de Unión al GTP rhoA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...