Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
2.
ChemSusChem ; : e202400569, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773704

RESUMEN

In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFe2O4/Fe2O3 (NFFO) nanoparticles derived from bimetallic NiFe-MOFs. Enhanced Li adsorption capacity and lithiophilic modulation were achieved by bimetallic MOFs-derivatives which prompted faster and more homogeneous Li deposition. The intermittent model was further verified in conjunction with the density functional theory (DFT) calculations and electrodeposition behaviors. As a result, the obtained Li-CC@NFFO||Li-CC@NFFO symmetric batteries exhibit prolonged lifespan and low hysteresis voltage even under ultra-high current and capacity conditions (5 mA cm-2, 10 mAh cm-2), what's more, the full battery coupled with a high mass loading (9 mg cm-2) of LiFePO4 cathode can be cycled at a high rate of 5C, the capacity retention is up to 95.2% before 700 cycles. This work is of great significance to understand the evolution of lithium dendrites on the 3D intermittent lithiophilic frameworks.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668167

RESUMEN

Solid oxide fuel cells (SOFCs) offer a significant advantage over other fuel cells in terms of flexibility in the choice of fuel. Ammonia stands out as an excellent fuel choice for SOFCs due to its easy transportation and storage, carbon-free nature and mature synthesis technology. For direct-ammonia SOFCs (DA-SOFCs), the development of anode catalysts that have efficient catalytic activity for both NH3 decomposition and H2 oxidation reactions is of great significance. Herein, we develop a Mo-doped La0.6Sr0.4Fe0.8Ni0.2O3-δ (La0.6Sr0.4Fe0.7Ni0.2Mo0.1O3-δ, LSFNM) material, and explore its potential as a symmetrical electrode for DA-SOFCs. After reduction, the main cubic perovskite phase of LSFNM remained unchanged, but some FeNi3 alloy nanoparticles and a small amount of SrLaFeO4 oxide phase were generated. Such reduced LSFNM exhibits excellent catalytic activity for ammonia decomposition due to the presence of FeNi3 alloy nanoparticles, ensuring that it can be used as an anode for DA-SOFCs. In addition, LSFNM shows high oxygen reduction reactivity, indicating that it can also be a cathode for DA-SOFCs. Consequently, a direct-ammonia symmetrical SOFC (DA-SSOFC) with the LSFNM-infiltrated doped ceria (LSFNM-SDCi) electrode delivers a superior peak power density (PPD) of 487 mW cm-2 at 800 °C when NH3 fuel is utilised. More importantly, because Mo doping greatly enhances the reduction stability of the material, the DA-SSOFC with the LSFN-MSDCi electrode exhibits strong operational stability without significant degradation for over 400 h at 700 °C.

5.
Bioresour Technol ; 399: 130619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552857

RESUMEN

Mineral processing encounters the challenge of separating chalcopyrite and pyrite, with the conventional high alkali process characterized by issues such as large dosages of reagents, complex procedures, and environmental pollution. This study addresses this challenge by isolating and enriching Thiobacillus ferrooxidans (T·f) from acidic mine drainage, employing it as a biosurfactant. The modification mechanism of T·f was thoroughly analyzed. Fe dissolution through biological oxidation formed a passivation layer (jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and metal sulfides (Cu/Fe-S) on the surface of minerals. Metal oxides, hydroxides, and sulfates were detected on the surface of two minerals, but the difference was that elemental sulfur (S0) and copper sulfide (Cu-S) were detected on the surface of chalcopyrite. elucidating the fundamental reason for the significant difference in surface hydrophobicity between chalcopyrite and pyrite. T·f has been successfully used as a biosurfactant to achieve copper-sulfur separation.


Asunto(s)
Acidithiobacillus , Cobre , Hierro , Thiobacillus , Minerales , Sulfuros , Azufre
6.
Clin Epigenetics ; 16(1): 24, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331927

RESUMEN

DNA methylation is a pivotal epigenetic modification that affects gene expression. Tumor immune microenvironment (TIME) comprises diverse immune cells and stromal components, creating a complex landscape that can either promote or inhibit tumor progression. In the TIME, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. DNA methylation regulates immune cell differentiation, immune responses, and TIME composition Targeting DNA methylation in TIME offers various potential avenues for enhancing immune cytotoxicity and reducing immunosuppression. Recent studies have demonstrated that modification of DNA methylation patterns can promote immune cell infiltration and function. However, challenges persist in understanding the precise mechanisms underlying DNA methylation in the TIME, developing selective epigenetic therapies, and effectively integrating these therapies with other antitumor strategies. In conclusion, DNA methylation of both tumor cells and immune cells interacts with the TIME, and thus affects clinical efficacy. The regulation of DNA methylation within the TIME holds significant promise for the advancement of tumor immunotherapy. Addressing these challenges is crucial for harnessing the full potential of epigenetic interventions to enhance antitumor immune responses and improve patient outcomes.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Epigénesis Genética , Inmunoterapia , Tolerancia Inmunológica , Microambiente Tumoral/genética
7.
Plant Physiol Biochem ; 208: 108441, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377887

RESUMEN

The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.


Asunto(s)
Morus , Plantones , Plantones/metabolismo , Morus/genética , Tetraploidía , Sequías , Triploidía , Agua/fisiología , Prolina/metabolismo
8.
Langmuir ; 40(6): 3063-3073, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38308649

RESUMEN

The original water in the coal rock pores plays a controlling role in the occurrence of gas. Furthermore, during the hydraulic fracturing process, pressurized fracturing fluid with a higher pressure than the original pore pressure in the fractures drives the fracturing fluid to infiltrate into the coal rock pores, thereby altering the occurrence pattern of gas and water in the original pores. However, due to the limitations of the indoor simulation device, a systematic conclusion on the impact of the original pore water and imbibition fracturing fluid on coalbed methane reservoirs has not yet been formed. In this paper, an integrated device combining displacement and low-field nuclear magnetic resonance was employed using underground cylindrical coal rock samples as experimental subjects. Experimental conditions were maintained at a temperature of 30 °C, a confining pressure of 23 MPa, and an approximate reservoir pressure of 15 MPa. The initial water saturation levels were altered to 0, 27.88, and 42.18% to replicate the conditions of a coalbed methane reservoir at a depth of approximately 1200 m. Fracturing fluid with a pressure of 18 MPa was injected into the experimental samples to simulate the impact of the fracturing fluid on the original reservoir during hydraulic fracturing. This allowed for a realistic assessment of the influence of initial water saturation and fracturing fluid absorption on the coalbed methane recovery rate in the reservoir. The experimental results indicate that the imbibition process promotes the desorption of adsorbed gas, and the desorption amount of adsorbed gas increases with the increase in the original water saturation. This will result in an increase in the gas pressure within the pore system. The conditions of this experiment, in comparison to the previous ones, more closely resemble real reservoir conditions. This enables a realistic assessment of how the presence of the original water content and the absorption of the fracturing fluid affect gas occurrence within the reservoir.

9.
J Exp Bot ; 75(2): 508-510, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197461

Asunto(s)
Calcio , Simbiosis
10.
Nature ; 626(7997): 105-110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297175

RESUMEN

Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.

11.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279051

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento Celular
12.
ACS Omega ; 9(1): 675-691, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222664

RESUMEN

Multicluster fracturing of horizontal wells has evolved into a mature and widely adopted technique for exploiting unconventional oil and gas fields. A well-designed multicluster completion strategy can yield an ideal fracturing outcome, significantly enhancing production rates and potentially delivering substantial economic benefits. Nevertheless, empirical evidence suggests that fractured horizontal wells frequently exhibit pronounced nonuniform production profiles, a prevalent issue stemming from the irregular geometry of propagated fractures. This issue critically constrains production rates. To mitigate the adverse effects of low-uniformity fracture propagation, it is imperative to elucidate the factors influencing uniformity levels and their corresponding patterns. Despite extensive discussions on hydraulic fracture propagation mechanisms and optional factors in hydraulic fracturing engineering, there exists a notable oversight regarding the optimization of perforation parameters to achieve improved fracturing uniformity during well completion procedures. This paper introduces an optimization method for perforation parameters based on a fully coupled pseudo-3D numerical model of multicluster fracturing. The impact patterns of cluster spacing, perforation number, and initial perforation diameter on multifracture propagation results and uniformity levels are thoroughly examined. The multicluster fracturing model, developed using the displacement discontinuous method (DDM), is coupled with material balance, pressure transmission, hole erosion computation, and initiation asynchrony estimation. To quantify the uniformity level of the fracturing result, the modified propagation uniformity index (Ufm) is employed. Simulation results from 20 cases are categorized into six groups based on varied changing patterns of perforation parameters, leading to the identification of five recommendations for optimizing perforation parameters. By implementation of the discussed optimized perforation parameters, successful fracturing outcomes were realized.

13.
Metab Eng ; 81: 157-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081506

RESUMEN

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Asunto(s)
Sulfatasas , Humanos , Sulfatasas/genética , Sulfatasas/metabolismo
14.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067424

RESUMEN

Organic amine and nanosilica were combined to create a nano-demulsifier, which was employed in the oil-water separation process of a condensate emulsion. The nano-demulsifier has the structure of hyperbranched polymers and the skeleton structure of hyperbranched nanomaterials, and displays the demulsification impact of organic amine polymers as well as the synergistic effect of nanomaterials. This nano-demulsifier has the potential to drastically reduce the quantity of condensate demulsifiers utilized in the gathering station. The dehydration rate of the condensate lotion in the gas gathering station can reach more than 95% only at a concentration of 1.0 wt.%. Its application can significantly increase the separation efficiency of the condensate emulsion as well as the quality of condensate oil. It has a positive impact on cost reduction and efficiency in gas well production. The mechanism of action of the demulsifier was also studied, and the results show that the demulsifier is a phase reverse demulsifier.

15.
Huan Jing Ke Xue ; 44(11): 6354-6361, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973117

RESUMEN

Microbial communities in the soil might be affected by heavy metal contamination caused by anthropogenic activities associated with the coal-based industry. This study analyzed the differences in soil physicochemical properties, heavy metal concentrations, and enzyme activities surrounding different coal-based industrial fields(coal mining industry, coal preparation industry, coal-based chemical industry, and coal-fired power industry) in Shanxi Province, North China. Moreover, soil samples from farmland and parks away from all the industrial plants were collected as references. Based on the 16S rRNA high-throughput sequencing, we identified the composition of soil bacterial communities. Spearman correlation and redundancy analyses were used to explore the relationships between soil bacterial communities and environmental factors. The results showed that the concentrations of most heavy metals were greater than the local background values, particularly for As, Pb, and Cd, but they did not exceed the risk screening values of Soil Environment Quality:Risk Control Standard for Soil Contamination of Agriculture Land(GB 15618-2018). There were significant differences in soil cellulase and alkaline phosphatase activities among sampling fields. Actinobacteria was the predominant bacterial phyla, with the highest relative abundance surrounding the coal-based chemical plants, followed by Proteobacteria. The soil bacterial communities were significantly affected by Cd, total carbon, total nitrogen, and alkaline phosphatase activity. This study could provide a foundation for the ecological remediation of the coal-based industrial region in the future.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Cadmio/análisis , Carbón Mineral/análisis , ARN Ribosómico 16S , Fosfatasa Alcalina , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Bacterias/genética , China
16.
Environ Monit Assess ; 195(12): 1446, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37946068

RESUMEN

The translocation and accumulation patterns of polycyclic aromatic hydrocarbons (PAHs) in the soil-crop system have important implications for the fate of PAHs and human health. This study summarized the concentrations of 16 priority PAHs in the soils and various parts of mature winter wheat in China, sourced from a screening of previous literature in English and Chinese databases. The study analyzes the distribution characteristics, transfer patterns, and human health risks of PAHs in sites studied in Shaanxi, Henan, and Shandong provinces. The results showed that the concentrations of Σ16 PAHs in the rhizosphere soil of wheat ranged from 10.30 to 893.68 ng/g, in descending order of Shaanxi > Henan > average > Shandong. In sites with mild to moderate contamination (200 < Σ16 PAHs < 600 ng/g; i.e., Henan and Shaanxi), the concentration of Σ16 PAHs in the roots was higher than that in the stems or the grains, while in contamination-free sites (Σ16 PAHs < 200 ng/g; i.e., Shandong), the highest concentration of Σ16 PAHs was found in the stems. Generally, the concentrations of PAHs increased in the order of roots-stems-grains. The predominant PAHs in each part of wheat were 2- or 3-ring compounds, with five- or six-ring PAHs being more prevalent in wheat from Shanghe, Shandong. The bioaccumulation factors of different wheat parts from Shaanxi and Henan were consistently smaller than 1, and low- and medium-ring (2-4 rings) PAHs had bigger bioconcentration factors than high-ring (5-6 rings) PAHs. However, the accumulation of PAHs in the aboveground parts of wheat was larger than that in the underground parts of the Shandong sites. The linear regression relationship between the octanol-water partition coefficient and root concentration factor (RCF) of PAHs reflected that low and medium-ring PAHs were more easily absorbed by wheat roots than high-ring PAHs in Shaanxi and Henan. Our assessment of the health risks of oral wheat intake in adults and children by the incremental lifetime cancer risk (ILCR) model found a potential carcinogenic risk for both age groups in each province, with higher risks in adults than in children.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Adulto , Niño , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Triticum , Ecosistema , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , China , Medición de Riesgo
17.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959794

RESUMEN

Enhanced sulfurization has always been the focus of research on the flotation of copper oxide minerals. In this study, combined ammonium-amine salts were innovatively applied to improve the sulfurization of azurite. Flotation tests were carried out to evaluate the promoting effect of ammonium-amine co-activation on the sulfurization-xanthate flotation of azurite, and the microstructure evolution of sulfurized products was investigated to reveal the mechanism underlying this promoting effect. Compared with single ammonium (amine) salt activation, ammonium-amine co-activation improved the floatability of azurite to a greater extent, i.e., the flotation recovery increased by over 4 percentage points. ToF-SIMS, ICP-OES, FESEM-EDS, AFM, XRD, and UV-vis analyses indicated that ammonium-amine co-activation combined the advantages of inorganic ammonium for buffering pH and organic amine for copper ion complexation, thus promoting the growth of sulfurized crystal products (covellite) and enhancing the adhesion stability of sulfurized products on azurite. Therefore, increasing amounts of copper sulfide components were generated under the ammonium-amine-Na2S system, promoting the adsorption of additional xanthate on azurite. This study provides theoretical support for the application of combined ammonium-amine salts for the sulfurization flotation of copper oxide.

18.
Zhongguo Gu Shang ; 36(11): 1091-6, 2023 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-38012881

RESUMEN

OBJECTIVE: To explore the mechanism of Haitongpi Prescription extract in the treatment of knee osteoarthritis based on transcriptome. METHODS: Total of 12 SPF grade rats were divided into control group(group C), model group(group M), and Haitongpi prescription group(group HP). The knee osteoarthritis rat model was established using the Panicker method for group M and group HP, and group HP was intervened by local topical application of Haitongpi Prescription extract for 4 weeks. Total RNA from mouse knee cartilage was extracted and three sets of differential genes were obtained through sequencing.Differential genes were prediction and analysis through GO function and KEGG pathway enrichment analysis. RESULTS: A total of 109 differentially expressed genes were identified in Group C versus Group M, while 118 differentially expressed genes were identified in Group M versus Group HP, resulting in a total of 28 genes. GO functional enrichment analysis showed that the mechanism of HP extract in treating knee osteoarthritis mainly involved immunoglobulin mediated immune response, immunoglobulin complexes, and antigen binding; KEGG pathway enrichment analysis showed correlation with tumor necrosis factor (TNF) signaling pathway, interleukin 17(IL-17) signaling pathway, and estrogen signaling pathway. CONCLUSION: HP extract can exert therapeutic effects on knee osteoarthritis through mechanisms such as immunoglobulin mediated immune response, immunoglobulin complexes, and antigen binding, as well as signaling pathways such as TNF signaling pathway, IL-17 signaling pathway, and estrogen signaling pathway.


Asunto(s)
Osteoartritis de la Rodilla , Ratones , Ratas , Animales , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Transcriptoma , Interleucina-17 , Pomadas , Estrógenos , Inmunoglobulinas
19.
Orthop J Sports Med ; 11(11): 23259671231208678, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954861

RESUMEN

Background: Several techniques have been used by surgeons for anatomic tibial tunnel placement in anterior cruciate ligament (ACL) reconstruction, including the ACL stump positioning (ASP) technique and the tibial spine positioning (TSP) technique. Purpose/Hypothesis: The purpose of this study was to evaluate whether bony landmarks (medial and lateral tibial spine [MLTS]) can be a reliable reference for improving the accuracy of tibial tunnel placement in anatomic single-bundle ACL reconstruction compared with the ACL stump. It was hypothesized that the MLTS would not be a reliable bony landmark for tibial tunnel placement. Study Design: Cohort study; Level of evidence, 3. Methods: The 3-dimensional computed tomography images of 111 patients who underwent ACL reconstruction between 2020 and 2021 were included in this study. For tibial tunnel placement, the ASP technique was used in 49 patients, and the TSP technique was used in 62 patients. The 3-dimensional computed tomography images were reconstructed to enable measurements of the locations of the MLTS and tunnel center based on a grid method. Statistical analysis was conducted to compare the MLTS location and tibial tunnel position as well as the accuracy (mean distance of each actual location from the anatomic center) and precision (standard deviation of the accuracy, indicating the reproducibility of the tunnel position) of the tunnel position between the ASP and TSP groups. Results: Significant differences were observed between the ASP and TSP groups in terms of the tibial tunnel position on the mediolateral axis (46.7% ± 2.0% vs 45.9% ± 2.2%, respectively; P = .034), while no significant differences were found in terms of the accuracy (4.1% vs 4.6%, respectively; P = .259) or precision (2.1% vs 2.1%, respectively; P = .259) of tibial tunnel positioning between the 2 groups. Conclusion: In anatomic single-bundle ACL reconstruction, the use of the MLTS for tibial tunnel placement achieved comparable accuracy and precision compared with the use of ACL remnants, supporting its role as a reliable bony landmark in tibial tunnel positioning.

20.
World J Oncol ; 14(5): 350-357, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869238

RESUMEN

The utilization of radiotherapy (RT) serves as the principal approach for managing nasopharyngeal carcinoma (NPC). Consequently, it is imperative to investigate the correlation between the radiation microenvironment and radiation resistance in NPC. PubMed and China National Knowledge Infrastructure (CNKI) databases were accessed to perform a search utilizing the English keywords "nasopharyngeal cancer", "radiotherapy", and "microenvironment". The search time spanned from the establishment of the database until January 20, 2023. A total of 82 articles were included. The post-radiation tumor microenvironment (TME), or the radiation microenvironment, includes several components, such as the radiation-immune microenvironment and the radiation-hypoxic microenvironment. The radiation-immune microenvironment includes various factors like immune cells, signaling molecules, and extracellular matrix. RT can reshape the TME, leading to immune responses with both cytotoxic effects (T cells, B cells, natural killer (NK) cells) and immune escape mechanisms (regulatory T cells (Tregs), macrophages). RT enhances immune responses through DNA release, type I interferons, and immune cell recruitment. Radiation-hypoxic microenvironment affects metabolism and molecular changes. RT-induced hypoxia causes vascular changes, fibrosis, and vessel compression, leading to tissue hypoxia. Hypoxia activates hypoxia-inducible factor (HIF)-1α/2α, promoting angiogenesis and glycolysis in tumor cells. TME changes due to hypoxia also involve immune suppressive cells like myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and Tregs. The radiation microenvironment is involved in radiation resistance and holds a significant effect on the prognosis of patients with NPC. Exploring the radiation microenvironment provides new insights into RT and NPC research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...