Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Gen Med ; 17: 297-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314196

RESUMEN

Objective: To assess the key factors influencing the effectiveness of nirmatrelvir/ritonavir in treating elderly patients with COVID-19. Methods: This study was conducted on patients aged ≥60 who were admitted to the Second Affiliated Hospital of Soochow University for COVID-19 infection and were treated with nirmatrelvir/ritonavir. Clinical information was collected from patients and steady-state blood concentrations of nirmatrelvir and ritonavir were measured. Factors associated with treatment effects were searched by univariate and multivariate analysis. Results: A total of 68 (51 males and 17 females) patients had a median age of 80 (73.0-84.8) years were enrolled in this study. The blood concentration measurements (trough concentrations) of nirmatrelvir and ritonavir were 5.1 (2.6-7.1) and 0.4 (0.2-0.9) µg/mL, respectively. Adverse drug reaction was reported in 4 (5.9%) patients. Univariate analysis showed that age, clinical classification, APACHE II score, total bilirubin (TBil), aspartate transaminase (AST), lactate dehydrogenase (LDH), and total cholesterol (TC) were significantly associated with the effectiveness of treatment (P value <0.05). Concentration of nirmatrelvir was also associated with treatment outcome (P value <0.1). Based on the results of univariate analysis, the above factors were introduced into the multiple linear regression equation as independent variables, and the results showed that clinical classification was included in the regression equation model and was the most important factor affecting the treatment outcome. By receiver operating characteristic curve analysis, the area under curve of age + biochemical indicators + APACHE II score + clinical classification was 0.968 (95% CI = 0.919-1.000; P <0.0001). Among the 68 patients included in the study, 4 cases experienced adverse drug reactions. Conclusion: Age, clinical classification, APACHE II score, TBil, AST, LDH, and TC were significantly associated with the effectiveness of treatment in elderly patients with COVID-19.

2.
Int Urol Nephrol ; 56(2): 635-651, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37452988

RESUMEN

BACKGROUND: Membranous nephropathy (MN) and IgA nephropathy (IgAN) are the most common primary glomerulopathies worldwide. The systemic metabolic changes in the progression of MN and IgAN are not fully understood. METHODS: A total of 87 and 70 patients with MN and IgAN, respectively, and 30 healthy controls were enrolled in this study. Untargeted metabolomics was performed to explore the differential metabolites and metabolic pathways in the early stage of MN and IgAN. To judge the diagnostic ability of biomarkers, receiver operating characteristic curve analysis (ROC) were performed. RESULTS: Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) suggested that patients with MN and IgAN showed an obvious separation trend from the healthy controls. In addition, 155 and 148 metabolites were identified to be significantly altered in the MN and IgAN groups, respectively. Of these, 70 metabolites were markedly altered in both disease groups; six metabolites, including L-tryptophan, L-kynurenine, gamma-aminobutyric acid (GABA), indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine, showed the opposite tendency. The most affected metabolic pathways included the amino acid metabolic pathways, citrate cycle, pantothenate and CoA biosynthesis, and hormone signaling pathways. CONCLUSIONS: Substantial metabolic disorders occurred during the progression of MN and IgAN. L-tryptophan, L-kynurenine, GABA, indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine may show potential as biomarkers for the identification of MN and IgAN.


Asunto(s)
Glomerulonefritis por IGA , Glomerulonefritis Membranosa , Humanos , Glomerulonefritis por IGA/complicaciones , Glomerulonefritis por IGA/diagnóstico , Glomerulonefritis Membranosa/diagnóstico , Quinurenina , Triptófano , Biomarcadores , Ácido gamma-Aminobutírico
3.
Eur J Pharm Sci ; 189: 106535, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487949

RESUMEN

Nirmatrelvir is an effective component of Paxlovid, the first oral antiviral drug granted emergency use authorization by the FDA. Nirmatrelvir is prescribed extensively in older adult patients to treat the coronavirus disease 2019 (COVID-19) infection. In this study, population pharmacokinetic modeling with clinical study data was employed to explore the pharmacokinetic profile of nirmatrelvir in older adult Chinese patients with COVID-19 infection. The result suggests that the pharmacokinetic profile of nirmatrelvir can be described by a one-compartment model with first-order absorption and elimination in this study population. The calculated apparent clearance (CL/F), apparent volumes of distribution (V/F), and absorption rate constant (ka) for the typical patient were 4.16 L/h, 39.1 L, and 0.776, respectively. The area under the curve (AUC) of nirmatrelvir in the typical Chinese older adult was approximately three-fold higher than the AUCs in Chinese and Western young adult volunteers. At the same doses, the simulated AUCs were increased by 26%, 43%, 72%, and 135% in virtual populations with creatinine clearances of 60, 45, 30, and 15 mL/min, respectively. Our research provides an instructive reference for nirmatrelvir dose selection in older Chinese adults.


Asunto(s)
Antivirales , COVID-19 , Pueblos del Este de Asia , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Área Bajo la Curva , COVID-19/terapia , Ritonavir , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Antivirales/uso terapéutico
4.
Front Immunol ; 14: 1091753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993950

RESUMEN

Introduction: Paclitaxel is a chemotherapy drug that is commonly used to treat cancer, but it can cause paclitaxel-induced neuropathic pain (PINP) as a side effect. Resolvin D1 (RvD1) has been shown to be effective in promoting the resolution of inflammation and chronic pain. In this study, we evaluated the effects of RvD1 on PINP and its underlying mechanisms in mice. Methods: Behavioral analysis was used to assess the establishment of the PINP mouse model and to test the effects of RvD1 or other formulations on mouse pain behavior. Quantitative real-time polymerase chain reaction analysis was employed to detect the impact of RvD1 on 12/15 Lox, FPR2, and neuroinflammation in PTX-induced DRG neurons. Western blot analysis was used to examine the effects of RvD1 on FPR2, Nrf2, and HO-1 expression in DRG induced by PTX. TUNEL staining was used to detect the apoptosis of DRG neurons induced by BMDM conditioned medium. H2DCF-DA staining was used to detect the reactive oxygen species level of DRG neurons in the presence of PTX or RvD1+PTX treated BMDMs CM. Results: Expression of 12/15-Lox was decreased in the sciatic nerve and DRG of mice with PINP, suggesting a potential involvement of RvD1 in the resolution of PINP. Intraperitoneal injection of RvD1 promoted pain resolution of PINP in mice. Intrathecal injection of PTX-treated BMDMs induced mechanical pain hypersensitivity in naïve mice, while pretreatment of RvD1 in BMDMs prevented it. Macrophage infiltration increased in the DRGs of PINP mice, but it was not affected by RvD1 treatment. RvD1 increased IL-10 expression in the DRGs and macrophages, while IL-10 neutralizing antibody abolished the analgesic effect of RvD1 on PINP. The effects of RvD1 in promoting IL-10 production were also inhibited by N-formyl peptide receptor 2 (FPR2) antagonist. The primary cultured DRG neurons apoptosis increased after stimulation with condition medium of PTX-treated BMDMs, but decreased after pretreatment with RvD1 in BMDMs. Finally, Nrf2-HO1 signaling was additionally activated in DRG neurons after stimulation with condition medium of RvD1+PTX-treated BMDMs, but these effects were abolished by FPR2 blocker or IL-10 neutralizing antibody. Discussion: In conclusion, this study provides evidence that RvD1 may be a potential therapeutic strategy for the clinical treatment of PINP. RvD1/FPR2 upregulates IL-10 in macrophages under PINP condition, and then IL-10 activates the Nrf2- HO1 pathway in DRG neurons, relieve neuronal damage and PINP.


Asunto(s)
Interleucina-10 , Neuralgia , Ratones , Animales , Receptores de Formil Péptido , Factor 2 Relacionado con NF-E2 , Paclitaxel/efectos adversos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico
5.
Int J Biol Markers ; 38(1): 37-45, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36377344

RESUMEN

OBJECTIVES: Non-small cell lung cancer (NSCLC) is a leading type of lung cancer with a high mortality rate worldwide. Although many procedures for the diagnosis and prognosis assessment of lung cancer exist, they are often laborious, expensive, and invasive. This study aimed to develop an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based analysis method for the plasma biomarkers of NSCLC with the potential to indicate the stages and progression of this malignancy conveniently and reliably. METHODS: A total of 53 patients with NSCLC in early stages (I-III) and advanced stage (IV) were classified into the early and advanced groups based on the tumor node metastasis staging system. A comprehensive metabolomic analysis of plasma from patients with NSCLC was performed via UPLC-MS/MS. Principal component analysis and partial least squares-discriminant analysis were conducted for statistical analysis. Potential biomarkers were evaluated and screened through receiver operating characteristic analyses and correlation analysis. Main differential metabolic pathways were also identified by utilizing metaboanalyst. RESULTS: A total of 129 differential metabolites were detected in accordance with the criteria of VIP ≥ 1 and a P-value of ≤ 0.05. The receiver operating characteristic curves indicated that 11 of these metabolites have the potential to be promising markers of disease progression. Apparent correlated metabolites were also filtered out. Furthermore, the 11 most predominant metabolic pathways with alterations involved in NSCLC were identified. CONCLUSION: Our study focused on the plasma metabolomic changes in patients with NSCLC. These changes may be used for the prediction of the stage and progression of NSCLC. Moreover, we discussed the metabolic pathways wherein the altered metabolites were mainly enriched.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/diagnóstico , Cromatografía Liquida , Espectrometría de Masas en Tándem , Biomarcadores
6.
Transl Pediatr ; 11(8): 1346-1361, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36072536

RESUMEN

Background: In childhood, metastatic neuroblastoma (NB) is the most common extracranial solid tumor, but there are no appropriate drugs for its treatment. Dihydroartemisinin (DHA), a drug for malaria treatment, has therapeutic potential in several cancers; however, its mechanisms remain unclear. This study aimed to investigate the anti-proliferation effect of DHA on SH-SY5Y cells and to explore its mechanism in vitro. Methods: We used 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to measure the half-maximal inhibitory concentration (IC50) of DHA; western blot was used to determine protein levels; propidium iodide (PI) staining was used to determine apoptotic cells; JC-1 staining to measure mitochondrial membrane potential; and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining was used to determine reactive oxygen species (ROS). Metabonomic analysis was performed by using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based untargeted metabolomics. Multivariate statistical analysis was performed to screen potential metabolites associated with DHA treatment in SH-SY5Y cells. Results: It was shown that DHA inhibited SH-SY5Y cell proliferation and increased poly (ADP-ribose) polymerase (PARP-1) and caspase 3 in a dose-dependent manner. In Further, DHA promoted ROS generation and γH2AX expression. In addition, a total of 125 proposed metabolites in SH-SY5Y cells and 45 vital metabolic pathways were identified through UHPLC-MS/MS-based untargeted metabolomic analysis. Conclusions: These data suggest that DHA could regulate taurine, linoleic acid, phenylalanine metabolism, and tryptophan metabolism, which are involved in the anti-proliferation effect of DHA in SH-SY5Y cells.

7.
Front Immunol ; 13: 952066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874780

RESUMEN

Patients with metastatic cancer refractory to standard systemic therapies have a poor prognosis and few therapeutic options. Radiotherapy can shape the tumor microenvironment (TME) by inducing immunogenic cell death and promoting tumor recognition by natural killer cells and T lymphocytes. Granulocyte macrophage-colony stimulating factor (GM-CSF) was known to promote dendric cell maturation and function, and might also induce the macrophage polarization with anti-tumor capabilities. A phase II trial (ChiCTR1900026175) was conducted to assess the clinical efficacy and safety of radiotherapy, PD-1 inhibitor and GM-CSF (PRaG regimen). This trial was registered at http://www.chictr.org.cn/index.aspx. A PRaG cycle consisted of 3 fractions of 5 or 8 Gy delivered for one metastatic lesion from day 1, followed by 200 µg subcutaneous injection of GM-CSF once daily for 2 weeks, and intravenous infusion of PD-1 inhibitor once within one week after completion of radiotherapy. The PRaG regimen was repeated every 21 days for at least two cycles. Once the PRaG therapy was completed, the patient continued PD-1 inhibitor monotherapy until confirmed disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR). A total of 54 patients were enrolled with a median follow-up time of 16.4 months. The ORR was 16.7%, and the disease control rate was 46.3% in intent-to-treat patients. Median progression-free survival was 4.0 months (95% confidence interval [CI], 3.3 to 4.8), and median overall survival was 10.5 months (95% CI, 8.7 to 12.2). Grade 3 treatment-related adverse events occurred in five patients (10.0%) and grade 4 in one patient (2.0%). Therefore, the PRaG regimen was well tolerated with acceptable toxicity and may represent a promising salvage treatment for patients with chemotherapy-refractory solid tumors. It is likely that PRaG acts via heating upthe TME with radiotherapy and GM-CSF, which was further boosted by PD-1 inhibitors.


Asunto(s)
Quimioradioterapia , Neoplasias Primarias Secundarias , Quimioradioterapia/efectos adversos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Primarias Secundarias/terapia , Terapia Recuperativa , Resultado del Tratamiento , Microambiente Tumoral
8.
Ann Transl Med ; 10(2): 103, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35282068

RESUMEN

Background: L-carnitine is an endogenous vitamin-like amino acid derivate which plays an essential role in energy metabolism and can be easily lost via dialysis. Deficiency of L-carnitine has great effects on many aspects of bodily functions. To determine the deficiency degree and adjust the supplementation dose, a rapid, sensitive, and specific method for the detection of endogenous L-carnitine in the plasma of dialysis patients using ultra-high performance liquid chromatography-Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-HRMS) was developed and validated. Methods: The plasma samples were processed by protein precipitation and centrifugation before analysis using UHPLC-Orbitrap-HRMS. Sample separation was achieved with a hydrophilic interaction liquid chromatography (HILIC) column, using an isocratic elution with a runtime of 5 min. The separated analytes were detected by positive ionization mode in full scan mode and targeted-single ion monitoring (t-SIM) mode. Mildronate was used as the internal standard (IS). Results: All the plasma could be detected in the range of 6.169 to 197.394 µM, with adequate accuracy, precision, and recovery. The method was validated in fortified validation with relative standard deviations (RSD) 5.15-8.74%. This method was applied to the analysis of 105 dialysis patients and 39 healthy participants, the results revealed that peritoneal dialysis patients without L-carnitine supplementation should pay more attention to L-carnitine monitoring, meanwhile, all the hemodialysis patients were advised to be routinely given a full dose of L-carnitine, no matter whether they had taken L-carnitine or not. Conclusions: This study developed a simple and rapid UHPLC-Orbitrap-HRMS method for detection of endogenous L-carnitine in dialysis patients, which could be useful to promote rational drug use.

9.
Front Pharmacol ; 13: 837543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321330

RESUMEN

A growing body of evidence suggests that gut microbiota could participate in the progression of depression via the microbiota-gut-brain axis. However, the detailed microbial metabolic profile changes in the progression of depression is still not fully elucidated. In this study, a liquid chromatography coupled to mass spectrometry-based untargeted serum high-throughput metabolomics method was first performed to screen for potential biomarkers in a depressive-like state in a chronic unpredictable mild stress (CUMS)-induced mouse model. Our results identified that the bile acid and energy metabolism pathways were significantly affected in CUMS progression. The detailed bile acid profiles were subsequently quantified in the serum, liver, and feces. The results showed that CUMS significantly promoted the deconjugation of conjugated bile acid and secondary bile acid biosynthesis. Furthermore, 16S rRNA gene sequencing revealed that the increased secondary bile acid levels in the feces positively correlated with Ruminococcaceae_UCG-010, Ruminococcus, and Clostridia_UCG-014 abundance. Taken together, our study suggested that changes in family Ruminococcaceae abundance following chronic stress increased biosynthesis of deoxycholic acid (DCA), a unconjugated secondary bile acid in the intestine. Aberrant activation of secondary bile acid biosynthesis pathway thereby increased the hydrophobicity of the bile acid pool, which might, in turn, promoted metabolic disturbances and disease progression in CUMS mice.

10.
Heart Vessels ; 37(5): 821-827, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34694442

RESUMEN

This study aimed to evaluate the variability of dabigatran plasma concentration and the association with clinical events in Chinese patients treated with dabigatran etexilate (DE) for non-valvular atrial fibrillation (NVAF). The steady-state concentration of dabigatran (the active metabolite of DE) was determined at trough and peak. The effect of dabigatran concentration variability and related factors on clinical outcomes were explored. Data from 86 patients receiving a fixed dose of 110 mg showed that dabigatran trough concentration varied remarkably. Age, BMI and history of heart failure were identified as important covariates for dabigatran trough concentration. Dabigatran trough concentration (P = 0.002) and history of hypertension (P = 0.012) scores were identified as key factors for predicting the risk of bleeding events. Dabigatran trough concentration, affected by Age, BMI and history of heart failure, may serve as an independent risk factor for bleeding events in Chinese patients treated with DE for NVAF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Anticoagulantes/uso terapéutico , Antitrombinas/efectos adversos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Dabigatrán/efectos adversos , Insuficiencia Cardíaca/tratamiento farmacológico , Hemorragia/inducido químicamente , Humanos
11.
Braz. J. Pharm. Sci. (Online) ; 58: e191086, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1394042

RESUMEN

Abstract Fluoroquinolones are an important class of antimicrobial agents to manage infectious diseases. However, knowledge about how host bile acids are modified by fluoroquinolones is limited. We investigated and compared the impact of fluoroquinolones on circulating bile acid profiles and gut microbiota from in vivo studies. We administered ciprofloxacin (100 mg/kg/day) or moxifloxacin (40 mg/kg/day) orally to male Wistar rats for seven days. Fifteen bile acids (BAs) from the serum and large intestine were quantified by HPLC-MS/MS. The diversity of gut microbiota after ciprofloxacin and moxifloxacin treatment was analyzed using high-throughput, next-generation sequencing technology. The two fluoroquinolone-treated groups had different BA profiles. Ciprofloxacin significantly reduced the hydrophobicity index of the BA pool, reduced secondary BAs, and increased taurine-conjugated primary BAs in both the serum and large intestine as compared with moxifloxacin. Besides, ciprofloxacin treatment altered intestinal microbiota with a remarkable increase in Firmicutes to Bacteroidetes ratio, while moxifloxacin exerted no effect. What we found suggests that different fluoroquinolones have a distinct effect on the host BAs metabolism and intestinal bacteria, and therefore provide guidance on the selection of fluoroquinolones to treat infectious diseases.


Asunto(s)
Animales , Masculino , Ratas , Ácidos y Sales Biliares , Estudio Comparativo , Ciprofloxacina/análisis , Ratas Wistar , Microbioma Gastrointestinal , Moxifloxacino/análisis , Cromatografía Líquida de Alta Presión/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Hidrofóbicas e Hidrofílicas , Intestino Grueso/anomalías , Antiinfecciosos/farmacología
12.
Eur J Pharmacol ; 899: 174054, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33771522

RESUMEN

MicroRNAs (miRNAs) are involved in the initiation and development of cancer and participate in drug resistance. Paclitaxel (PTX) is a first-line chemotherapy drug for advanced non-small cell lung cancer (NSCLC). The abnormal miRNA expression in NSCLC and its association with chemotherapy drug resistance remains largely unknown. The study aimed to investigate the aberrant expression of miR-221-3p in NSCLC and to elucidate its molecular mechanisms in relation to PTX resistance. PTX increased miR-221-3p expression and regulated MDM2/P53 expression in the PTX-sensitive NSCLC strain (A549). Meanwhile, miR-221-3p was rarely expressed and not interfered by PTX in PTX-resistant A549 cells (A549/Taxol). Dual-luciferase reporter assay confirmed that miR-221-3p specifically binds to MDM2 messenger RNA and inhibited MDM2 expression. The expression of MDM2 and P53 showed a negative correlation in NSCLC cell lines. MiR-221-3p down-regulation reduced the sensitivity of A549 cells to PTX, whereas its up-regulation partially reversed the A549/Taxol cells resistance to PTX and increased the chemosensitivity of A549/Taxol cells to PTX in xenograft models. Quantitative polymerase chain reaction analysis revealed that miR-221-3p expression increased, whereas the MDM2 level decreased in human NSCLC tumor tissues. Moreover, Western bolt analysis showed that P53 was lowly expressed in tumor tissues with MDM2 overexpression. Low expression of miR-221-3p in NSCLC tissues might indicate a poor T staging. In conclusion, miR-221-3p overexpression could regulate MDM2/p53 signaling pathway to reverse the PTX resistance of NSCLC and induce apoptosis in vitro and vivo.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , Paclitaxel/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Aging (Albany NY) ; 13(4): 5986-6009, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33612481

RESUMEN

BACKGROUND: This study aimed to investigate the aberrant expression of hsa_circ_0002874 in non-small cell lung cancer (NSCLC) and elucidate associated molecular mechanisms that influence apoptosis and induce paclitaxel (PTX) resistance. METHODS: Inhibitors were used to downregulate circRNA or miRNA expression. pCDNA plasmid transfection and mimics were used to upregulate circRNA or miRNA expression. Dual-luciferase reporter assays were conducted to evaluate interactions between miR1273f and MDM2. Xenograft tumor models were used to assess the effect of hsa_circ_0002874 and miR1273f on tumor growth. NSCLC tissues and matched non-cancerous tissues were also collected for correlation analysis. RESULTS: hsa_circ_0002874 acts as a sponge for miR1273f which targets MDM2/P53. The stability of the hsa_circ_0002874/miR1273f/MDM2/P53 pathway was verified by upregulating and downregulating the expression of hsa_circ_0002874 and miR1273f. hsa_circ_0002874 downregulation or miR1273f upregulation reversed the resistance of the A549/Taxol cells in xenograft models. The expression of hsa_circ_0002874 was high, and the level of MDM2 was low in NSCLC tissues. P53 was only weakly expressed in NSCLC tissues with high expression of MDM2. CONCLUSIONS: hsa_circ_0002874 is strongly expressed in NSCLC tissues and maybe a potential marker for PTX resistance. hsa_circ_0002874 downregulation could regulate miR1273f/MDM2/P53 signaling pathway to reverse the PTX resistance of NSCLC and induce apoptosis in vitro and vivo.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Paclitaxel/farmacología , Transducción de Señal , Células A549 , Anciano , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Circular , Proteína p53 Supresora de Tumor
14.
Neurosci Bull ; 36(4): 346-358, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31939095

RESUMEN

Patients with diabetes mellitus have a higher risk of developing Parkinson's disease (PD). However, the molecular links between PD and diabetes remain unclear. In this study, we investigated the roles of thioredoxin-interacting protein (TXNIP) in Parkin/PINK1-mediated mitophagy in dopaminergic (DA) cells under high-glucose (HG) conditions. In streptozotocin-induced diabetic mice, TXNIP was upregulated and autophagy was inhibited in the midbrain, while the loss of DA neurons was accelerated by hyperglycemia. In cultured PC12 cells under HG, TXNIP expression was upregulated and the intracellular reactive oxygen species (ROS) levels increased, leading to cell death. Autophagic flux was further blocked and PINK1 expression was decreased under HG conditions. Parkin expression in the mitochondrial fraction and carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced co-localization of COX IV (marker for mitochondria) and LAMP1 (marker for lysosomes) were also significantly decreased by HG. Overexpression of TXNIP was sufficient to decrease the expression of both PINK1 and Parkin in PC12 cells, while knockdown of the expression of TXNIP by siRNA decreased intracellular ROS and attenuated cellular injury under HG. Moreover, inhibition of TXNIP improved the CCCP-induced co-localization of COX IV and LAMP1 in PC12 cells under HG. Together, these results suggest that TXNIP regulates Parkin/PINK1-mediated mitophagy under HG conditions, and targeting TXNIP may be a promising therapeutic strategy for reducing the risk of PD under hyperglycemic conditions.


Asunto(s)
Proteínas Portadoras/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , Tiorredoxinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diabetes Mellitus Experimental , Glucosa , Masculino , Ratones , Células PC12 , Enfermedad de Parkinson , Ratas
15.
Theranostics ; 9(15): 4287-4307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285762

RESUMEN

Methylglyoxal (MGO), an endogenous reactive carbonyl compound, plays a key role in the pathogenesis of diabetic neuropathy. The aim of this study is to investigate the role of MGO in diabetic itch and hypoalgesia, two common symptoms associated with diabetic neuropathy. Methods: Scratching behavior, mechanical itch (alloknesis), and thermal hypoalgesia were quantified after intradermal (i.d.) injection of MGO in naïve mice or in diabetic mice induced by intraperitoneal (i.p.) injection of streptozotocin (STZ). Behavioral testing, patch-clamp recording, transgenic mice, and gene expression analysis were used to investigate the mechanisms underlying diabetic itch and hypoalgesia in mice. Results: I.d. injection of MGO evoked dose-dependent scratching in normal mice. Addition of MGO directly activated transient receptor potential ankyrin 1 (TRPA1) to induce inward currents and calcium influx in dorsal root ganglia (DRG) neurons or in TRPA1-expressing HEK293 cells. Mechanical itch, but not spontaneous itch was developed in STZ-induced diabetic mice. Genetic ablation of Trpa1 (Trpa1-/- ), pharmacological blockade of TRPA1 and Nav1.7, antioxidants, and mitogen-activated protein kinase kinase enzyme (MEK) inhibitor U0126 abrogated itch induced by MGO or in STZ-induced diabetic mice. Thermal hypoalgesia was induced by intrathecal (i.t.) injection of MGO or in STZ-induced diabetic mice, which was abolished by MGO scavengers, intrathecal injection of TRPA1 blockers, and in Trpa1-/- mice. Conclusion: This study revealed that Nav1.7 and MGO-mediated activation of TRPA1 play key roles in itch and hypoalgesia in a murine model of type 1 diabetes. Thereby, we provide a novel potential therapeutic strategy for the treatment of itch and hypoalgesia induced by diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Neuralgia/metabolismo , Prurito/metabolismo , Canal Catiónico TRPA1/metabolismo , Animales , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/genética , Neuropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/etiología , Neuralgia/genética , Prurito/etiología , Prurito/genética , Piruvaldehído/efectos adversos , Canal Catiónico TRPA1/genética
16.
Neurosci Bull ; 35(4): 779-780, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31177385

RESUMEN

In the original publication, Figure 4G was incorrectly published. The correct version of Figure 4G is presented in this correction. This correction does not affect the conclusions of the paper.

17.
Neurosci Bull ; 35(4): 661-672, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30900142

RESUMEN

The present study was designed to examine the therapeutic effects of Botulinum neurotoxin A (BoNT/A) on depression-like behaviors in mice and to explore the potential mechanisms. These results revealed that a single facial injection of BoNT/A induced a rapid and prolonged improvement of depression-like behaviors in naïve and space-restriction-stressed (SRS) mice, reflected by a decreased duration of immobility in behavioral despair tests. BoNT/A significantly increased the 5-hydroxytryptamine (5-HT) levels in several brain regions, including the hippocampus and hypothalamus, in SRS mice. BoNT/A increased the expression of the N-methyl-D-aspartate receptor subunits NR1 and NR2B in the hippocampus, which were significantly decreased in SRS mice. Furthermore, BoNT/A significantly increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which were decreased in SRS mice. Finally, BoNT/A transiently increased the levels of phosphorylated extracellular signal-regulated kinase (p-ERK) and cAMP-response element binding protein (p-CREB), which were suppressed in the hippocampus of SRS mice. Collectively, these results demonstrated that BoNT/A treatment has anti-depressant-like activity in mice, and this is associated with increased 5-HT levels and the activation of BDNF/ERK/CREB pathways in the hippocampus, supporting further investigation of BoNT/A therapy in depression.


Asunto(s)
Antidepresivos/uso terapéutico , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/uso terapéutico , Depresión/tratamiento farmacológico , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Biochem Biophys Res Commun ; 504(1): 123-128, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30173893

RESUMEN

Paclitaxel (PTX) is a first-line chemotherapy drug for advanced non-small cell lung cancer (NSCLC). The long-chain non-coding RNA maternally expressed gene 3 (MEG3) is a recognized tumor suppressor. This study aimed to explore the effects of PTX on the expression of MEG3 and its anti-tumor mechanism in lung cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were performed to determine cell proliferation. Quantitative polymerase chain reaction was used to determine the levels of MEG3 expressions. Western blot and immunofluorescence were used to detect protein levels. Small interfering RNA or pCDNA-MEG3 transfection was used to downregulate or upregulate MEG3 expression. Dichlorof luorescein diacetate was used to detect intracellular reactive oxygen species. Flow cytometry was used to analyze apoptosis. PTX significantly inhibited the proliferation of NSCLC cells and increased the expressions of MEG3 and P53. The downregulation of MEG3 attenuated PTX-induced cytotoxicity, whereas upregulation of MEG3 induced cell death and increased P53 expression. The inhibition of P53 caused no effect on the upstream MEG3 expression. Our results suggest that the MEG3-P53 pathway is involved in the apoptosis of A549 cells induced by PTX.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular , Cisplatino/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno , Regulación hacia Arriba
19.
Front Mol Neurosci ; 11: 120, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731707

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease characterized the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Brain endogenous morphine biosynthesis was reported to be impaired in PD patients and exogenous morphine attenuated 6-hydroxydopamine (6-OHDA)-induced cell death in vitro. However, the mechanisms underlying neuroprotection of morphine in PD are still unclear. In the present study, we investigated the neuroprotective effects of low-dose morphine in cellular and animal models of PD and the possible underlying mechanisms. Herein, we found 6-OHDA and rotenone decreased the mRNA expression of key enzymes involved in endogenous morphine biosynthesis in SH-SY5Y cells. Incubation of morphine prevented 6-OHDA-induced apoptosis, restored mitochondrial membrane potential, and inhibited the accumulation of intracellular reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, morphine attenuated the 6-OHDA-induced endoplasmic reticulum (ER) stress possible by activating autophagy in SH-SY5Y cells. Finally, oral application of low-dose morphine significantly improved midbrain tyrosine hydroxylase (TH) expression, decreased apomorphine-evoked rotation and attenuated pain hypersensitivity in a 6-OHDA-induced PD rat model, without the risks associated with morphine addiction. Feeding of low-dose morphine prolonged the lifespan and improved the motor function in several transgenic Drosophila PD models in gender, genotype, and dose-dependent manners. Overall, our results suggest that neuroprotection of low-dose morphine may be mediated by attenuating ER stress and oxidative stress, activating autophagy, and ameliorating mitochondrial function.

20.
Biochem Biophys Res Commun ; 496(4): 1062-1068, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29402411

RESUMEN

Chronic itch is a distressing symptom of many skin diseases and negatively impacts quality of life. However, there is no medication for most forms of chronic itch, although antihistamines are often used for anti-itch treatment. Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, exhibits anti-oxidative and anti-inflammatory properties. Our previous studies highlighted a key role of oxidative stress and proinflammatory cytokines in acute and chronic itch. Here, we evaluated the effects of green tea polyphenon 60 and EGCG on acute and chronic itch in mouse models and explored its potential mechanisms. The effects of EGCG were determined by behavioral tests in mouse models of acute and chronic itch, which were induced by compound 48/80, chloroquine (CQ), and 5% imiquimod cream treatment, respectively. We found that systemic or local administration of green tea polyphenon 60 or EGCG significantly alleviated compound 48/80- and chloroquine-induced acute itch in a dose-dependent manner in mice. Incubation of EGCG significantly decreased the accumulation of intracellular reactive oxygen species (ROS) directly induced by compound 48/80 and CQ in cultured ND7-23 cells, a dorsal root ganglia derived cell line. EGCG also attenuated imiquimod-induced chronic psoriatic itch behaviors and skin epidermal hyperplasia in mice. In addition, EGCG inhibited the expression of IL-23 mRNA in skin and TRPV1 mRNA in dorsal root ganglia (DRG). Finally, EGCG remarkably inhibited compound 48/80-induced phosphorylation of extracellular signal-regulated kinase (ERK) and imiquimod-induced p-AKT in the spinal cord of mice, respectively. Collectively, these results indicated EGCG could be a promising strategy for anti-itch therapy.


Asunto(s)
Catequina/análogos & derivados , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Oncogénica v-akt/inmunología , Prurito/inmunología , Prurito/prevención & control , Piel/inmunología , Médula Espinal/inmunología , Enfermedad Aguda , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Catequina/administración & dosificación , Enfermedad Crónica , Citocinas/inmunología , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Ratones , Especies Reactivas de Oxígeno/inmunología , Piel/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...