Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 187: 106606, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516884

RESUMEN

Epidermal growth factor receptor variant III (EGFRvIII) is a mutant isoform of EGFR with a deletion of exons 2-7 making it insensitive to EGF stimulation and downstream signal constitutive activation. However, the mechanism underlying the stability of EGFRvIII remains unclear. Based on CRISPR-Cas9 library screening, we found that mucin1 (MUC1) is essential for EGFRvIII glioma cell survival and temozolomide (TMZ) resistance. We revealed that MUC1-C was upregulated in EGFRvIII-positive cells, where it enhanced the stability of EGFRvIII. Knockdown of MUC1-C increased the colocalization of EGFRvIII and lysosomes. Upregulation of MUC1 occurred in an NF-κB dependent manner, and inhibition of the NF-κB pathway could interrupt the EGFRvIII-MUC1 feedback loop by inhibiting MUC1-C. In a previous report, we identified AC1Q3QWB (AQB), a small molecule that could inhibit the phosphorylation of NF-κB. By screening the structural analogs of AQB, we obtained EPIC-1027, which could inhibit the NF-κB pathway more effectively. EPIC-1027 disrupted the EGFRvIII-MUC1-C positive feedback loop in vitro and in vivo, inhibited glioma progression, and promoted sensitization to TMZ. In conclusion, we revealed the pivotal role of MUC1-C in stabilizing EGFRvIII in glioblastoma (GBM) and identified a small molecule, EPIC-1027, with great potential in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , FN-kappa B/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Mucina-1/genética
2.
Theranostics ; 11(4): 1814-1827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33408783

RESUMEN

Ischemia-induced cerebral injury is a major cause of dementia or death worldwide. The pre-diagnosis is still challenging due to the retarded symptoms. The retina is regarded as the extension of cerebral tissue. Circular RNAs have emerged as the crucial regulators in gene regulatory network and disease progression. However, it is still unknown whether circRNAs can be used as the common regulators and diagnostic markers for cerebral neurodegeneration and retinal neurodegeneration. Methods: C57BL/6J mice were subjected to transient middle cerebral artery occlusion and circRNA microarray profiling was performed to identify neurodegeneration-related circRNAs. Quantitative reverse-transcription PCR (qRT-PCR) assays were performed to verify circRNA expression pattern. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to determine the biologic modules and signaling pathway. TTC staining, Nissl's staining, and immunofluorescence staining assays were performed to investigate the role of circRNA in cerebral neurodegeneration and retinal neurodegeneration in vivo. MTT assay, Propidium iodide (PI)/Calcein-AM staining, and Rhodamine 123 assays were performed to investigate the role of circRNA in neuronal injury in vitro. Bioinformatics, RIP, and luciferase activity assays were performed to determine the regulatory mechanism of circRNA in neurodegeneration. Results: 217 differentially expressed circRNAs were identified between ischemic cerebral tissues and normal controls. Among them, cGLIS3 was shown as the common regulator of cerebral neurodegeneration and retinal neurodegeneration. cGLIS3 silencing alleviated ischemia-induced retinal neurodegeneration and MCAO-induced cerebral neurodegeneration in vivo. cGLIS3 silencing protected against OGD/R-induced RGC injury in vitro. The circulating levels of cGLIS3 were significantly increased in the patients with ischemic stroke compared to healthy subjects. cGLIS3 levels were also increased in the aqueous humor of the patients with retinal vein occlusion. cGLIS3 regulated neuronal cell injury by acting as miR-203 sponge and its level was controlled by EIF4A3. Conclusions: This study provides molecular evidence that the retina is window of the brain from circRNA perspective. cGLIS3 is a common regulator and diagnostic marker of cerebral neurodegeneration and retinal neurodegeneration.


Asunto(s)
Biomarcadores/metabolismo , Isquemia Encefálica/complicaciones , Proteínas de Unión al ADN/genética , Infarto de la Arteria Cerebral Media/fisiopatología , ARN Circular/genética , Proteínas Represoras/genética , Degeneración Retiniana/patología , Transactivadores/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo
3.
Behav Brain Res ; 353: 114-123, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012417

RESUMEN

Early Alzheimer's disease (AD) and depression share many symptoms, but the underlying mechanisms are not clear. Therefore, characterizing the shared and different biological changes between the two disorders will be helpful in making an early diagnosis and planning treatment. In the present study, 8-week-old APPSwe/PS1dE9 transgenic mice received chronic mild stress (CMS) for 8 weeks followed by a series of behavioral, biochemical and pathological analyses. APPSwe/PS1dE9 mice showed depressive- and anxiety-like behaviors, and reduced sociability, accompanied by high levels of soluble beta-amyloid, glial activation, neuroinflammation and brain derived neurotrophic factor signaling disturbance in the hippocampus. Notably, APPSwe/PS1dE9 mice exposure to CMS partially aggravated anxiety-like states rather than depressive-like responses and sociability deficits, with further elevated hippocampal interleukin-6 and tumor necrosis factor-α levels. These results demonstrated that young adult APPSwe/PS1dE9 have depressive- and anxiety-like phenotypes that were resistant to CMS compared to wild-type mice. This finding may help to understand the pathogenic mechanism of psychiatric symptoms associated with early AD.


Asunto(s)
Enfermedad de Alzheimer/psicología , Ansiedad al Tratamiento Odontológico , Depresión , Estrés Psicológico , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Corticosterona/sangre , Ansiedad al Tratamiento Odontológico/sangre , Ansiedad al Tratamiento Odontológico/inmunología , Ansiedad al Tratamiento Odontológico/patología , Depresión/sangre , Depresión/inmunología , Depresión/patología , Modelos Animales de Enfermedad , Femenino , Hipocampo/inmunología , Hipocampo/patología , Inflamación/sangre , Inflamación/metabolismo , Inflamación/patología , Inflamación/psicología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Distribución Aleatoria , Estrés Psicológico/sangre , Estrés Psicológico/inmunología , Estrés Psicológico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...